.o: American Journal of
Biomedical Science & Research

Research Article

@www.biomedgrid.com

ISSN: 2642-1747

Copyright© Gefei Li

Development of Composite Index for Multiple
Correlated Risk Factors in Clinical Research

Gefei Li* and Shein Chung Chow

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina

*Corresponding author: Gefei Li, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, 2424 Erwin Road, Durham,

North Carolina.

To Cite This article: Gefei Li* and Shein Chung Chow, Development of Composite Index for Multiple Correlated Risk Factors in Clinical Research.
Am ] Biomed Sci & Res. 2026 29(5) AJBSR.MS.1D.003838, DOI: 10.34297 /A]JBSR.2026.29.003838

Received: & December 23,2025; Published: & January 09, 2026

Abstract

In clinical research, a medical predictive modelling is often performed based on a set of risk factors (predictors) not only to inform disease
status but also to predict the performance of clinical outcome for an effective disease management. Under a well-established and validated medical
predictive model [1] developed a composite index of two highly correlated predictors regardless they may be positively or negatively and/or linearly
or nonlinearly correlated to the clinical outcome or response. In this article, we extend [1] results to multiple correlated predictors in two ways. One
is to fully utilize all predictors for development of so-called therapeutic index. The other one is to first

(i) divide all predictors into two groups (e.g., efficacy and safety),

(ii) obtain composite index of respective groups, i.e., efficacy index and safety index, and then

(iii) based on the individual composite index to develop a composite index for benefit-risk assessment [2]. The proposed extended composite

indices are evaluated both theoretically and via a clinical trial simulation.
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Introduction

In clinical research, a medical predictive model is often
developed using an appropriate statistical model based on some
risk factors (predictors) which may be correlated positively or
negatively in a linear or nonlinear fashion. In practice, a well-
established and validated medical predictive model cannot only be
used to inform disease status but also provide valuable information
regarding disease management including prevention, diagnosis,
and treatment of the disease under study. Li and Chow suggested
building a medical predictive model with a multivariate set of
predictors using a (logistic) regression analysis approach by the
following steps:

(i)  identifying potential predictors (e.g., demographics or
patient characteristics) by determining associations between the
potential predictors and the response,

(i)  testing for co-linearity among the identified predictors,

(iii) conducting predictive model fitting with the identified
predictors,

(iv) performing goodness-of-fit of the fitted model, and

(v) validating the developed medical predictive model both
internally (i.e., reproducibility) and externally (i.e., generalizability).

Chow, et al, [1] indicated that most commonly used composite

@ @ This work is licensed under Creative Commons Attribution 4.0 License|A]BSR.MS.ID.003838.

694


WWW.biomedgrid.com
WWW.biomedgrid.com
https://dx.doi.org/10.34297/AJBSR.2026.29.003838

Am ] Biomed Sci & Res

indices in clinical research are of the form of xfxf, where X
and x,are identified highly correlated risk factors (predictors).
For example, Body Mass Index (BMI) is commonly considered in
obesity studies, where BMI is defined as the ratio between body
weight (kg) and the square of height (m), i.e, BMI= xl“xi’, where X,
is body weight (kg) and X, is height (m) with a =1 and b = -2. For
another example, consider studies for examination of QT interval
prolongation for cardiotoxicity. The commonly considered index is
Bazett ‘s QT interval adjusted for heart rate (RR), denoted by O7T.B
, where OT.B =xf’x§, where X, is QT interval and x, is RR with a
=1and b =-1/2 [3]. Along this time, Chow, et al, [1] proposed
the development of a composite index of two highly correlated risk
factors under a multiplicative model. Chow, et al, [1] also indicated
that their proposed composite index has the following advantages:
first, in the interest of parsimony of predictors, the development a
composite index reduces a multiple-parameter (e.g., two predictors
as discussed in this article) problem to a single parameter (the
developed composite index) problem. Second, the developed
composite index is able to address the positively/negatively and/
or linearly/non-linearly correlation between each of the two
predictors (which are correlated each other) and the response.
Third, the developed composite index outperforms each individual
predictor in two ways:

(i) if each predictor can inform the disease status or treatment
effect, the composite index can definitely do and

(ii) if the composite index can inform the disease status or
treatment effect, each individual predictor may not be able to.

The purpose of this article is to develop a statistically principled
framework for constructing composite indices from multiple,
potentially correlated risk factors, and to investigate how such
indices can be used for clinical prediction, therapeutic evaluation,
and benefit-risk assessment. Specifically, we aim to

(i) propose a systematic procedure for deriving the exponent
parameters of a composite index through alog-linear modeling
approach, and

(i) explore practical considerations such as interpretability,
rounding of exponent parameters, and implementation in
clinical decision making. The remainder of this article is
organized as follows. Section 2 briefly outlines the general
statistical methodology for developing a composite index
based on multiple correlated risk factors, including model
formulation, parameter estimation, and the Bayesian predictive
framework. Section 3 validates the developed composite index
and examines its characteristics and practical challenges.
Section 4 presents potential applications, with emphasis on (i)
the development of a therapeutic index and (ii) a composite
index for benefit-risk assessment. Section 5 reports simulation
results and discusses adjacent-integer considerations.
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Statistical Method
Notations

Under the multiple regression framework, the dataset can be
represented in matrix form as follows:

i X Xy o Xy

Vs X Xy Xk2
Y=|"-1, X = . .

yn xln x2n o xkn

’

where Y is the n x 1 vector of observed responses, and X is
the nxk design matrix of predictors. The element x;; denotes the
value of the 7 -th predictor for the J -th observation. Without loss
of generality, assume that Y and all predictors X, (i = 1, 2, ..., k)
are standardized variables. Under standardized variables, the mean
and variance of the regressors are given by

— 1 n ) 1 n — 2 .
X, :;inj =0, s :;]Z_;(xij _Xij =1, fori=1,...,k

=

Similarly, for the standardized variable of the clinical outcome
response (dependent variable), we have

l n

_ 1 \2
r=1y <o, S;:;Zl(yj_yj -1

n Jj=1

Suppose we are interested in developing a composite index for
a group of m highly correlated variables, where 7 <k.

Under standardized variables, the sample covariance between
any two predictors X, and X, (1<i,¢<k)is given by

1 n — — 1 n
Sit:_Z(xij_ij( U.—th:—injxtj.
n‘s n‘s

Similarly, the sample covariance between Y and &,is

1 n
Sp = 25
n Jj=1

As a result, the sample correlation between X,and X, and
between X, and Y can be expressed as
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Statistical Model

Under the framework of standardized variables, statistical
model can be written as follows

Y=Xf+e,

where Yy is the nxlvector of dependent variables, X is the
nx K matrix of regressors, S is the K x]vector of regression
coefficients, and g is the nxlvector of random errors. Thus,

the Ordinary Least Squares (OLS) estimator of fBis given by

p=(xx) x7.

Based on standardized variables, S can be expressed as a
function of the sample correlations.

Denote by x;the j-th row vector of X . Then the (i,t)-th
element of X' X is given by

=

(X'X) = ) X, X, = NS, = nr,.

it /A i
J=1

Furthermore, the 7 -th element of XY is

(X'Y),- - Zn;xv‘yj = NSy, =N,
=

2).
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Now, let 7, denote the sample correlation matrix of X, whose
(i,t) -thentryis 7,.Thus,  isa kxk symmetric matrix. Similarly,
let Ty denote the kx1 vector whose ; -th element is r;.y . Then we
can write

XX =nr

xx 2

XY= nF .

Substituting into the OLS estimator, we obtain

~ ' -1 ' -1 1
ﬁ:(XX) XY=(nr,) (nryX): P Vox -

Hence, under standardized variables, the OLS estimator
depends only on the correlation structure among predictors and
their correlations with the response variable. The vector

B:(ﬁla:&z’---’ﬁk)'

provides the estimated contribution of each predictor to the
response Y, which will be used to identify highly correlated subsets
of predictors for composite index construction.

Development of Composite Index

Chow, et al, [1] proposed a general methodology for
development of a composite index of two dependent predictors
regardless they are positively or negatively and/or linearly or
nonlinearly correlated under a well-established and validated
medical predictive model. In this subsection, we will focus on the
development of a composite index for multiple predictors (i.e., k >

Let YeR", X = [X1 . Xk] e R (standardized columns) , 5 € R*.. Fit the single global OLS once:

A

all —

This yields /}j forevery j=L,....k.

Following similar idea as Chow, et al, [1], the composite index
of k multiple predictors can be obtained by following the following
steps.

Step 1. Identify Highly Correlated Predictors

We first identify subsets of predictors that exhibit high
degrees of intercorrelation, as these are the best candidates for
integration into a composite index. Specifically, among the k
available predictors, we consider all possible subsets of size m =
2,3, 4 ... k. The number of such subsets is given by the binomial
coefficient Em . For each subset of m predictors, we calculate its
correlation toéfficient matrix, denoted by A. For this purpose, two
complementary methods are proposed to evaluate the degree of

collinearity within each subset:

B = (X'X)i1 X'Y(equivalently,with standardized data,,éa” = R;r%

) Eigenvalue-based method (Belsley, 1980) - By definition, the
relation between X, and X, denoted by A can be expressed as

12 13 1m

r21 1 }"23 r2m

A=C0rr(xi,xj)= o h, 1 7
- 1

For each correlation matrix A, we compute its eigenvalues A,

Ao A

|4—ar1
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The condition index K, , is defined as:

emax = emax /emin
According to Belsley (1980), if k< 10, collinearity can be
considered negligible.

If 10 < K, < 30, moderate collinearity exists; and if &, > 3Q,
the subset exhibits severe collinearity. We calculate X, for all [Z
possible subsets.

To operationalize the eigenvalue-based identification of highly
collinear predictors for composite index construction, we consider
two complementary subset selection rules:

Thresholded  Lexicographic  Condition-Index Rule
(Diagnostic Rule): We evaluate the condition index X, (S )for
all non-empty subsets S of the K candidate predictors. Following
the diagnostic interpretation of the condition index [4], we restrict
attention to subsets exhibiting moderate multicollinearity, defined
as those with «, . (S) >K,, We set K,= 10 as a conservative
diagnostic cutoff, restricting attention to subsets that already
exhibit at least moderate collinearity; this ensures the selected
subset is sufficiently redundant to be well summarized by a single
composite index. Among all such subsets, we select the subset with
the smallest cardinality |S| thereby identifying the minimal group
of predictors that already displays collinearity. If multiple subsets
share this minimal size, we retain the subset with the largest

condition index X, (S)

Penalized Condition-Index Rule (Complexity-Collinearity
Trade-Off) - When no subset satisfies the severe-collinearity
threshold, or when one wishes to explicitly balance collinearity
strength against subset size, we adopt a penalized selection
criterion. Specifically, for each non-empty subset S, we compute
K (S) and define the penalized objective

max

J,(S)=log(x,,.(S) —2|S

9
’

where A4>0 controls the penalty on subset size. We then select
the subset

S (A)=argmaxJ ,(S).

This criterion Favors subsets that yield a substantial increase in
the condition index while discouraging mechanically larger subsets.
The logarithmic transformation stabilizes the scale of «k, (S)
and yields an interpretable trade-off: adding one additional
predictor must increase X, (S) by at least a factor of e” to offset
the penalty. In empirical applications, A can be selected via external
validation (e.g., maximizing predictive reproducibility).

Determinant-Based Method - Alternatively, for each
correlation matrix A, we compute its determinant, denoted by |A]|.

The determinant provides a scalar measure of multicollinearity:

|A| - 0 implies strong collinearity,

Copyright© Gefei Li

whereas |A| —1 implies weak collinearity.

When comparing subsets of different cardinalities, we further
consider a dimension-normalized determinant defined as |A|”m,
which removes the mechanical dependence of the determinant on
subset size and enables meaningful comparison across subsets of
different dimensions. In practice, we evaluate this criterion over
all non-empty subsets of the k candidate predictors. Specifically,
for each subset size m=1,... ,k,, we enumerate all @j possible
subsets and compute the corresponding correlation matrices and
their determinants. The final subset used for composite index
construction is selected by minimizing the dimension-normalized
determinant |A|”m across all candidate subsets.

Step 2. Retain the Corresponding Coefficients from the
Global Fit

For the chosen m variables, let Sc{l,...,k} denote the index
set of the m variables selected in Step 1; in what follows we work
with the submatrix X_S and retain the corresponding coefficients
,BS = {,Bj : j € §} from the global fit.

Define the subset-driven linear predictor (partial contribution):

N Xon 1 X, | o
S P P e ) e
A ¥ X .
v, my,n My 1 o
xmlvl xmm 1
Let Xm] — x”:1,2 o Xmm _ xm:m 2
xml n xmm n

= Ym :Bml)(ml +ﬂAszm2 +~-~+ﬁme

Step 3. Construct the Multivariate Composite Index for m
Variables

Consider

A
= a4 @D, 4
Y, =X, XX e

’

After taking log-transformation, we have

log?, =a, logX, +a,logX, +--+a,logX, +loge

Let . . .
Y, '=log?,, X, =logX,6 , e=loge

American Journal of Biomedical Science & Research 697



Am ] Biomed Sci & Res

o '_ i ' '
Y,'=a X, +a,X, +--+a,X, +e

m

Estimate the exponents a ; by the method of ordinary least
square (OLS), the resultant composite index is then given by

. X
mm

Compositelndexzfm =X ::111 X:fz ..

Validation of the Developed Composite Index

We may validate the developed composite index by considering
how close an observed response ) , its predicted value ), and
the predicted value J, (obtained from the fitted regression model
of the composite index) are to one another. Specifically, let the
predicted value from the regression model be

Y =,b’lem1 +ﬂszm2 +~--+ﬂmmem

and let the predicted value from the composite index be

Ym =X:’;:X:;i ...Xﬁm

mm

To assess the closeness between YAm and Ym we propose two
criteria based on either the absolute difference or the relative
difference between them.

Criterionl. p, :P(|j/m —)7m| <5),

Y

Criterionll.p, = P

where & denotes a clinically or scientifically meaningful
tolerance level. In other words, it is desirable to have a high
probability that the absolute or relative difference between the
predicted value j>m and that from the composite index model J,,
isless than §.

Let Prand P> denote the probabilities defined above. For either
i=lor2 , itis of interest to test the following hypotheses:

H,:p,<p, versus H, :p, >p,,
where p_0 is a pre-specified constant (e.g., a desired level of
predictive agreement).

If the conclusion is to reject Hin favour of H, then the
developed multivariate composite index is considered statistically
validated.
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Internal Validation (Reproducibility Probability)

Consider the following exponential model
Y4 yh U
Ym - Xlemz Xmm &

Thus, the constructed composite index with the estimated
exponent vector is given by

V —x Gy ...y
¥, =X X e b
,

where d = (&1 yes @, ) is the vector of estimated exponent
coefficients obtained from the following log-transformed regression
analysis

log}}m =alogX, +a,logX +---+a,logX, +loge

where ¥’ =log(fm)» X =(108Xm|,--.»10ngm) ,

and e =log(¢).
Thus, we have
Y=Xa+e, where e~N(O,021)
The training dataset is given by
D={(x.Y)}
Thus, the reproducibility probability quantifies the chance that

the predicted composite index is close to the true composite index

for a new patient L
p = P(|Y* -7

<§|D)

Substituting the definitions

p, = P(‘exp(Y'*)—exp(X'*T(;)‘ < 5|D)

’

where ¢ is pre-determined, clinically negligible value.

By Bayes Therom, we have

B p(Y'X',a,O')ﬂ(aJ)
ﬂ-(aD,G) - Ip(Y'X',a,a)ﬁ(aa)da

where

Y'|X .a.0 ~N(Xa.c'I).Ifthe prior is specified as

alo~N(1.5,).
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then the posterior is

a|lD,c~N(u,.XZ,)

-1
1 7o o L o7y o
> = [7X Tx +20‘] =3 (7X Ty +201y0j

e (o2
Then the estimate of the exponent coefficients is given by
a = /’la .

For a non-informative prior then:

-1
Y = L xrx _ ! ¥ x'y
a "\ 2 He T GT

For a new patient, the latent log-composite-index value is
generated as

Y =X"Ta+e € ~N(0.07)

Integrating over the posterior of a yields the Bayesian posterior
predictive

I X . D.o~N(XTu . X"E X +07

The predicted composite index for the new patient is

~ % ST A
Y = exp(X a)

This value is deterministic given data and the new patient’s
predictors.

The true composite index for the new patient follows the true
model:

* *

o) * *
Y =X X% X e

Y= log(?*):X'*Ta+e*
So, the true composite index is:
Y =exp (Y *)
This is a random variable, whose distribution is given by the

posterior predictive above. Then we can compute the reproducibility
probability.

For a more realistic case in practice where O is unknown, we
place the following conjugate prior on the log-linear model:

alo?~N(u.0’%,). 0 ~Gamma™ (ay.7%)

Given the conjugate prior, the posterior distribution is
expressed as
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al X.¥,0" ~N(u,.0%,). 0" | X.T ~Gamma™ (. 4;).
where

S o= (SexTx) u =3 (55 mexTY)

n L - -
@, = ay gy = A+ g (V7Y 5 o] T2 )

The posterior predictive distribution is given by

P(Y'* X'*,D) - jP(Y'*‘X’*a,&)p(a,az\D)dadaz

[

Y

] ke /I [t [
X D~ t20‘5 X T’ua’i(l-i-X TZaX )
s

Then we can compute the reproducibility probability.

External Validation (Generalizability Probability)

The posterior distribution a | D § characterizes how the
exponent parameters are distributed in the original population.
However, when applying the composite index to a different patient
population, the underlying risk structure may change. To evaluate
whether the composite index generalizes to such new populations,
we adjust the posterior distribution of a to reflect potential
population-level differences.

We assume that when moving from the original population to
a new population, the exponent parameters may change in two
systematic ways:

Mean shift - The average effect of each predictor may differ
across populations. This is modeled by a shift vector

A=A )

Variance - Predictor effects may become more or less variable
in a new population. To capture this, we introduce a diagonal
scaling matrix.

¢ 0 0
0 ¢ 0

C= . N c.>0
0 0 5

so that the covariance is inflated or deflated by CZ_a C. Under
this population-shift assumption:

a( new)

D ~ N (n,+2.CZ,C)
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This distribution represents what the exponent vector would
look like if the composite-index model were developed in the new
population instead of the original population.

For a new patient with log predictors
(s * * T
X :(log)(m1 ,eooslog X, )

the log-composite index in the shifted population becomes:
Yo o= XTa" et e ~ N(O,GZ)

new

Thus, the posterior predictive distribution is:

Y |x",D~ N(X'*T (4, +2)XT(CE, )X +02)

new

If 02 is unknown, the predictive distribution becomes a
Student-t distribution, fully analogous to the reproducibility
analysis.

True composite index for the new population -

Y :exp(Y'* )

new new

Predicted composite index from our model :
Y= exp(X'*Ta)
Then the generalizability probability is:

v, Y

new

pg:P( <5|D)

It measures how likely the composite index, when applied to
a different patient population, continues to produce predictions
sufficiently close to the true composite-index values of that
population.

Remarks

Characteristic of Composite Index

The composite index is data-adaptive, exploiting correlation
structure to summarize shared information among predictors. Its
multiplicative, log-linear formulation ensures scale invariance and
yields interpretable contribution weights. By combining penalized
subset selection with external reproducibility evaluation, the index
balances parsimony and robustness. Importantly, the composite
index retains the original variables and produces directionally
meaningful contributions, facilitating clinical interpretation. Unlike
Principal Component Analysis (PCA), which generates orthogonal
components that are often difficult to interpret clinically, the
proposed index preserves the original clinical measurements. In
contrast to penalized regression methods such as LASSO, which
are primarily designed for sparse prediction, the composite index
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focuses on stable aggregation of correlated information. Compared
with simple unweighted summation, itallows data-driven weighting
without imposing equal contributions across predictors.

From a practical perspective, the composite index is
straightforward to implement once the relevant predictors are
identified. Under a well-established medical predictive model,
it offers several advantages, including parsimony in risk factors,
potential use as a diagnostic or monitoring tool, and utility in
disease management through integration of multiple clinically

relevant measurements into a single summary measure [5].

Challenging of Composite Index

Despite its flexibility and interpretability, the proposed
composite index faces several practical and methodological
challenges. First, its construction relies on the presence of sufficient
correlation among candidate predictors. When predictors are
weakly related or capture largely independent dimensions,
correlation-based screening may fail to identify meaningful subsets,
and the resulting index may offer limited advantage over simpler
aggregation strategies. In such cases, alternative formulations, such
as therapeutic indices based on all available predictors, may be
more appropriate. Second, the estimation of exponent coefficients
is sensitive to data quality and sample size. As the index is derived
from log-transformed variables and fitted through regression-
based procedures, small sample sizes, measurement error, or
extreme values can disproportionately influence the estimated
weights, potentially affecting stability and reproducibility.

Third, predictors may be of different data types, including
continuous, categorical, or ordinal variables. In such settings, the
proposed methodology may require modification, for example
through appropriate encoding or transformation into standardized
scores before index construction. verall, these challenges highlight
the importance of using composite indices judiciously, with careful
attention to data structure, estimation stability, sample size
considerations, and application context [6].

Potiential Application

Development of Therapeutic Index

[7] The composite index construction described above relies on
identifying subsets of predictors that exhibit strongintercorrelation.
In practice, clinical predictor sets often contain correlated
variables, but the therapeutic index retains all available predictors
regardless of their dependence structure. A Therapeutic Index
(TI) is designed to provide a global summary of treatment-related
or clinical information without imposing any correlation-based
selection among predictors. All available predictors are retained,
regardless of their mutual dependence structure. This formulation
is particularly useful in settings where predictors capture distinct
biological or clinical dimensions and are not expected to be highly
correlated.
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Formally, let X= ( X,,...,X, ) denote the full set of
standardized predictors. We construct the therapeutic index using
the same log-linear framework as in the composite index, but
applied to the entire predictor set:

logY=alog X, +a,log X, + ..+ a,log X, +e,

where the exponent vector 4= (a,..a;) is estimated
by ordinary least squares after standardization and centering,
following the same estimation procedure described in Section 2.

The resulting therapeutic index takes the multiplicative form
a a a
Tlc X, X, X%

Unlike the composite index, the therapeutic index does not
aim to exploit redundancy among predictors. Instead, it provides
an aggregate measure that reflects the joint contribution of all
available variables. As a result, the therapeutic index is more
broadly applicable but may be less parsimonious and potentially
more sensitive to noise when predictors are weakly related.

Composite Index for Benefit-Risk Assessment [8,9]

Beyond constructing a single index, the proposed framework
naturally extends to benefit-risk assessment by separating efficacy-
related and safety-related information into distinct composite
indices. Specifically, we first construct an efficacy index using all
available efficacy parameters, such as primary and secondary
clinical outcomes, biomarkers reflecting treatment benefit, or
disease progression measures. All efficacy predictors are retained,
and the index is estimated following the same log-linear procedure
described above. Similarly, a safety index is constructed using all
relevant safety parameters, which may include adverse event rates,
laboratory abnormalities, drug exposure measures, and indicators
of patient adherence or compliance. No correlation-based screening
is imposed at this stage, allowing the safety index to capture
multiple, potentially heterogeneous dimensions of treatment risk.

Formally, let x®and X denote the sets of efficacy and
safety predictors, respectively. The resulting indices take the

multiplicative forms
~(E)

Efficacy Indexoc [ J(X (")
j

’

~(S)

Safety Index < H(XZ(S) )
!

where the exponent vectors are estimated separately within
each domain.

This perspective naturally supports separating efficacy-
related and safety-related information into distinct yet comparable
summaries, enabling transparent integration and sensitivity
analyses when balancing potential gains against risks.
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Concluding Remarks

Simulation

To simulate the proposed compositeindex procedure, we apply it
to the Primary Biliary Cirrhosis (PBC) dataset. The outcome variable
is the time from study registration to death, recorded as time. The
candidate predictors include nine laboratory measures: bilirubin
(bili), cholesterol (chol), albumin (albumin), copper (copper),
alkaline phosphatase (alk.phos), aspartate aminotransferase (ast),
triglycerides (trig), platelet count (platelet), and prothrombin time
(protime). All analyses are conducted on complete cases. Using the
penalized condition-index rule, we select the subset of predictors
that balances collinearity and model complexity. A grid search over
the penalty parameter A identifies 4 =0.15 as maximizing the
external reproducibility probability. The resulting subset is

S" = { bili, ast, trig}.

Applying the composite index construction to this subset yields
continuous exponent estimates

=-0.01.

a,; =-0.35,a,,=0.13,a,,, =

ast

Discussion

For clinical implementation, continuous exponents can
be difficult to communicate or operationalize. We therefore
considered a restricted set of interpretable exponents, allowing
only integers and half-integers ending in .5. For each coefficient J

, we generated two candidates:
1.  the nearest integer, and
2. the nearest half-integer ending in .5.

With three predictors in S” this produces 2' 8 possible
rounded composite indices. For each candidate index, we re-
computed the external reproducibility probability 2. and selected
the rounded index that maximized P.. The best-performing
rounded index is

t
Composite Index,,,, ., <bili **.ast" trig"’ = L
bili trig
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