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Abstract

Chronic stress is a significant public health concern, with occupational stress being a predominant global source. It is increasingly 
recognized for its role in metabolic disorders, including obesity, insulin resistance, and hyperuricemia, through complex neuroendo-
crine, inflammatory, and behavioral mechanisms. This review explores the interplay between chronic stress and metabolic dysfunc-
tion, focusing on the dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic Nervous System (SNS), and 
how stress-induced changes contribute to metabolic syndrome and hyperuricemia. Prolonged cortisol and catecholamine release 
contributes to insulin resistance, visceral adiposity, and systemic inflammation, while stress-induced behavioral changes, such as 
poor diet and physical inactivity, exacerbate metabolic disturbances. Additionally, emerging evidence highlights the roles of oxida-
tive stress, mitochondrial dysfunction, and caveolae impairment in stress-related metabolic diseases. The bidirectional relationship 
between stress and metabolic disorders further complicates disease progression, as metabolic dysfunction itself amplifies stress 
responses. Future research should prioritize biomarker discovery, epigenetic influences, and personalized interventions, including 
both pharmacological and lifestyle-based strategies. Public health policies and workplace interventions are also essential to mit-
igate stress-induced metabolic risks. This review underscores the need for a multidisciplinary approach to address the growing 
burden of stress-related metabolic diseases.
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Introduction 

The detrimental effects of stress on both emotional and phys-
ical health [1] are well-documented and increasingly recognized 
as significant public health concerns. Occupational stress, in par-
ticular, represents the predominant source of chronic stress glob-
ally and has steadily intensified over recent decades [2]. Elevated 
levels of job-related stress, characterized by high demands coupled 
with a perceived lack of control, have been consistently associat-
ed with heightened risks of cardiovascular events (e.g., myocar-
dial infarction, hypertension), metabolic disorders (e.g., obesity),  

 
substance use disorders, anxiety, depression, and other mental and 
physical health conditions [3]. According to Gallup’s State of the 
Global Workplace 2023 report, 41% of global employees and 52% 
of U.S. and East Asian reported experiencing significant stress on 
the preceding day, underscoring the widespread prevalence of this 
issue (https://www.gallup.com/workplace/349484/state-of-the-
global-workplace.aspx). Among the various health consequences, 
stress-induced metabolic disorders have emerged as a critical area 
of concern. These disorders result from the interplay of physiologi-
cal, behavioral, and molecular mechanisms. Stress is fundamentally 
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a state of threatened homeostasis that elicits adaptive physiological 
responses, centrally regulated by the brain. The neuroendocrine 
systems of the Hypothalamic-Pituitary-Adrenal (HPA) axis [4] and 
the Sympathetic Nervous System (SNS) play a central role in me-
diating these responses [5]. The key stress hormones cortisol  and 
the catecholamines (e.g., adrenaline and noradrenaline) are essen-
tial for short-term adaptation to stress. However, chronic activation 
of these systems can override their protective functions. Sustained 
elevations in cortisol and catecholamines contribute to systemic 
dysregulation and are implicated in the pathogenesis of a range of 
health conditions, including metabolic syndrome [6], obesity [7], 
cancer [8], mental health disorders [9], hyperuricemia [10], car-
diovascular disease [11], and increased susceptibility to infections 
[12]. 

Stress rapidly reprograms hepatic energy metabolism, with 
effects that persist beyond the period of exposure [13]. The HPA 
axis responds almost immediately to stress, triggering a cascade of 
physiological responses [14]. Chronic psychosocial stress is associ-
ated with disrupted sleep and impaired metabolic health and may 
contribute to the increasing global prevalence of subclinical hypo-
thyroidism [14]. Prolonged stress, such as war-related stress, can 
disrupt systemic homeostasis, affecting metabolic processes, neu-
roendocrine regulation, and the function of the cardiovascular and 
respiratory systems [15]. In experimental models, chronic restraint 
stress alters hepatic metabolomic profiles, particularly the betaine 
metabolism pathway, and modulates critical metabolic signaling 
pathways, including INSR/PI3K/AKT/AMPK [16]. It also impacts 
the gut microbiome, altering its diversity, composition, and meta-
bolic output [17], thereby influencing host systemic metabolism. 
Stress-induced metabolic disorders result from a complex inter-
play of hormonal dysregulation, chronic inflammation, behavioral 
changes, molecular disturbances, and structural alterations at the 

cellular level, such as those affecting caveolae. These interconnect-
ed mechanisms create a self-perpetuating cycle that progressively 
impairs metabolic health. Understanding the biological pathways 
that link chronic stress to metabolic dysfunction is therefore essen-
tial. Given the widespread prevalence of both chronic stress and 
metabolic diseases in modern society, their potential pathophysi-
ological interaction represents a significant public health concern. 
Effective prevention and management require a comprehensive 
approach that includes stress reduction, nutritional interventions, 
and regular physical activity. This review aims to examine the key 
mechanisms underlying the relationship between chronic stress 
and metabolic disorders, with a particular focus on metabolic syn-
drome and hyperuricemia.

Mechanisms Underlying Stress-Induced Met-
abolic Disorders

Chronic psychological stress disrupts metabolic balance 
through neuroendocrine, immune, and behavioral mechanisms 
[18,19]. Persistent activation of the HPA axis elevates cortisol, 
leading to insulin resistance, abdominal obesity, and other meta-
bolic syndrome features. The Glucocorticoids (GCs) and the cate-
cholamines act synergistically to raise blood glucose levels [20] as 
does the ramp-up of cardiovascular output by the catecholamines 
[21]. Concurrent stimulation of the SNS raises catecholamine levels, 
further impairing metabolism and promoting inflammation. Behav-
ioral changes such as poor diet, inactivity, and inadequate sleep ex-
acerbate these effects. At the cellular level, stress-related hormones 
and cytokines hinder insulin signaling, damage mitochondria, and 
elevate oxidative stress [22]. These processes contribute to meta-
bolic disorders, including hyperuricemia, highlighting the complex 
and multifactorial nature of stress-induced metabolic dysfunction 
(Figure 1).

Figure 1: Schematic illustration of stress induced mechanisms contributing to metabolic disorders.
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Hormonal Imbalances via HPA Axis and SNS Activation

Chronic stress activates the HPA axis, leading to sustained cor-
tisol secretion. Cortisol promotes gluconeogenesis and lipolysis, 
increasing blood glucose and free fatty acids. Over time, this con-
tributes to insulin resistance and hyperglycemia [23], and hyper-
tension [24], hallmarks of metabolic syndrome. Cortisol may be 
associated with uric acid levels under physical stress [25]. SNS acti-
vation releases catecholamines, which enhance lipolysis and gluco-
neogenesis [26], and mobilize glucose and fatty acids, exacerbating 
oxidative stress and inflammation. Prolonged SNS activity elevates 
blood pressure and free fatty acids, exacerbating hypertension 
and insulin resistance [27], and hyperuricemia [28]. HPA activity 
promotes visceral fat storage, which is metabolically active and se-
cretes pro-inflammatory cytokines [29]. This chronic low-grade in-
flammation impairs insulin signaling, linking obesity to insulin re-
sistance and metabolic syndrome [30]. Cortisol and catecholamine 
increase uric acid levels through enhanced purine degradation and 
reduced renal excretion [31]. Cortisol contributes via protein ca-
tabolism and insulin resistance, while catecholamines impair renal 
clearance through vasoconstriction and altered tubular handling.

Glucocorticoid Resistance

Chronic stress contributes to metabolic dysfunction through 
the development of GC resistance, which diminishes cortisol’s an-
ti-inflammatory effects [32]. In glucocorticoid resistance, despite 
reduced GC signaling in some tissues, visceral adipose tissue often 
remains sensitive, contributing to the redistribution of fat toward 
visceral depots, increasing cardiovascular risk [33]. This resistance 
allows inflammation to persist, particularly within visceral adipose 
tissue, where immune cells actively contribute to tissue damage, 
atherosclerosis, and insulin resistance. Inflammatory cytokines, 
such as TNF-α, IL-6, and CRP, further disrupt insulin receptor sig-
naling, impairing glucose uptake [34] in the liver and skeletal mus-
cles. Concurrently, elevated gluconeogenesis and increased levels of 
free fatty acids exacerbate hepatic insulin resistance and contribute 
to the development of Non-Alcoholic Fatty Liver Disease (NAFLD) 
[35]. Persistent insulin resistance places chronic demand on pan-
creatic β-cells, which may ultimately lead to β-cell exhaustion and 
the progression of type 2 diabetes. Additionally, chronic stress in-
creases the production of Reactive Oxygen Species (ROS) [36], caus-
ing mitochondrial damage and further impairing insulin signaling 
pathways [37]. Together, these stress-induced inflammatory and 
oxidative processes play a central role in the pathogenesis of insulin 
resistance and related metabolic disorders.

Behavioral and Lifestyle Factors

Beyond hormonal dysregulation, stress significantly influ-
ences behavioral patterns that contribute to metabolic disorders. 
Stress-induced comfort eating leads to increased consumption of 
high-calorie, sugar- and fat-rich foods, a behavior mediated through 
hypothalamic reward pathways [38] and associated with weight 
gain. Additionally, stress-related sleep disturbances disrupt the bal-
ance of leptin (a satiety hormone) and ghrelin (a hunger hormone), 
enhancing appetite and food cravings [39]. Reduced physical activ-

ity due to stress exacerbates energy imbalance [40], accelerating 
obesity and metabolic complications.

Gut Dysbiosis

Stress induces gut microbiota dysbiosis [41], increasing intes-
tinal permeability and disrupting uric acid metabolism [42]. This 
allows endotoxins to enter the bloodstream, causing metabolic en-
dotoxemia [43], which drives inflammation, insulin resistance and 
hyperuricemia [44].

Epigenetic Changes

Chronic stress may induce epigenetic changes (e.g., DNA meth-
ylation) in genes regulating glucose/lipid metabolism [45], predis-
posing individuals to metabolic diseases.

Oxidative Stress and Mitochondrial Dysfunction

Chronic stress amplifies oxidative stress, contributing to mi-
tochondrial dysfunction and impaired insulin signaling. Stress-in-
duced TNF-α, IL-6, and CRP promote insulin resistance and endo-
thelial dysfunction [46]. Oxidative stress from prolonged cortisol 
exposure damages mitochondria, impairing energy metabolism 
[47].

Caveolar Dysfunction

Psychological stress exerts its effects indirectly, but meaning-
fully, on caveolar function through systemic pathways. Caveolae are 
small plasma membrane invaginations that serve as critical plat-
forms for cellular adaptation to various stressors [48]. Their struc-
ture and function are deeply influenced by mechanical, oxidative, 
and metabolic stress, with widespread implications for metabolic 
diseases [49]. Caveolae are critical regulators of cellular responses 
to stress. Dysfunction of caveolae is linked to a range of diseases, 
including cardiovascular disorders, metabolic syndrome, and hy-
peruricemia, highliting their potential as therapeutic targets for 
enhancing cellular resilience [44,50].

Mechanical stress induces caveolae formation [51]. Caveolae 
flatten in response to membrane tension, acting as protective buf-
fers against mechanical damage [52]. This mechanoprotective func-
tion buffers cells against rupture and damage. It relies on the cave-
olin-1 (Cav1) protein for maintaining caveolar structure. Deficiency 
or dysfunction in caveolae increases susceptibility to diseases like 
muscular dystrophy, pulmonary fibrosis, and atherosclerosis [53]. 
Caveolae compartmentalize key components of redox signaling by 
localizing ROS-producing enzymes and antioxidant systems, main-
taining redox homeostasis [54]. They also regulate key signaling 
pathways (e.g., MAPK, AKT) involved in cell survival and apoptosis. 
Disruption of these roles contributes to oxidative stress and meta-
bolic dysfunction [55]. Caveolae are central to lipid, eNOS, uric acid 
and glucose metabolism [56,57]. They facilitate cholesterol uptake, 
insulin receptor organization, and glucose or uric acid transporter 
function. Metabolic stressors, resulting from excess nutrients such 
as hyperlipidaemia and diabetes, impair these processes, promot-
ing insulin resistance and metabolic syndrome [49]. Caveolae can 
help endothelial cells adapt to shear stress from blood flow, and 
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loss of caveolae can disrupt vascular tone and promotes hyperten-
sion [58]. Overall, caveolae serve as crucial integrators of stress 
signals. Their dysfunction under chronic stress conditions plays a 
significant role in the development of metabolic syndrome, cardio-
vascular disease, hypertension, and hyperuricemia [49,57].

Clinical Manifestations of Metabolic Diseases 
under Chronic Stress

Chronic stress is a risk factor for the development of metabolic 
diseases. Meta-analysis links anxiety/stress to 7-14% higher odds 
of metabolic syndrome [59]. Chronic stress disrupts energy homeo-
stasis, promoting metabolic diseases, and can exacerbate existing 
conditions, making them harder to manage. Patients under chronic 
stress might have poorer outcomes, and managing stress could be 
part of treatment plans. Furthermore, the interplay between psy-
chological factors and physiological changes, such as poor sleep 
and diet, and sedentary lifestyle, creates additional risk factors for 
metabolic disorders. Inflammation can link stress with metabolic 
diseases. These interconnected mechanisms culminate in glucose 
metabolism, visceral adiposity, inflammation, and behaviors that 
worsen metabolic health. The cluster of conditions, including in-
sulin resistance, obesity, and dyslipidemia, resulting from systemic 
dysregulation may also exert synergistic effects on the body’s re-
sponse to stress.

Hyperglycemia and Diabetes

The effects of stress on type I diabetes remain contradicto-
ry. Some retrospective human studies suggest that psychological 
stress may precipitate type I diabetes as various stressors can ei-
ther trigger or prevent the onset in experimental diabetes animal 
models [60]. Chronic stress impairs GLUT4 translocation and pro-
motes hepatic gluconeogenesis [61], and reliably produces hyper-
glycemia which induces type II diabetes. At the cellular level, both 
environmental and internal stressors contribute to insulin resis-
tance and β-cell dysfunction. These stressors activate molecular 
pathways that intensify Endoplasmic Reticulum (ER) stress, the 
integrated stress response, oxidative stress, and impair autophagy 
[62]. Although these stress-responsive pathways are interconnect-
ed, their individual roles in maintaining glucose homeostasis and 
preserving β-cell function remain under investigation [63]. Hyper-
insulinism itself can cause elevated ER luminal hydrogen peroxide 
(H₂O₂) production, leading to mild ER stress and reduced cell via-
bility, though additional harmful factors beyond H₂O₂ are involved 
in β-cell dysfunction [64]. Other stress-induced pathologies that 
can drive diabetes progression include dysregulated lipid signaling, 
mitochondrial oxidative stress, ER stress, and localized inflamma-
tion [65]. Catecholamines are the primary hormonal mediators of 
the stress response. Although they do not typically cause adverse 
effects in the acute phase, prolonged exposure can disrupt glu-
cose homeostasis, contributing to chronic hyperglycemia, insulin 
resistance, and the eventual development of type II diabetes [66]. 
In skeletal muscle, GCs inhibit the insulin-induced translocation of 
GLUT4 to the cell membrane, reducing glucose uptake and increas-
ing blood glucose levels [67]. In white adipose tissue, GCs promote 

lipolysis, generating glycerol (a gluconeogenic substrate) and lead-
ing to the accumulation of nonesterified fatty acids in muscle cells 
[68]. These fatty acids impair insulin signaling, further diminishing 
glucose uptake and perpetuating a hyperglycemic state. Addition-
ally, corticosteroids inhibit pancreatic β-cells from producing and 
secreting insulin [69]. Interestingly, acute hyperglycemia during 
stress may serve as an adaptive mechanism. It provides readily 
available energy to the brain and immune system during injury, 
infection, or stress, functioning as part of an evolutionary survival 
response [70]. However, when stress becomes chronic, persistent 
hyperglycemia contributes to insulin resistance and eventually type 
II diabetes. Additionally, diabetes may also cause abnormalities in 
the regulation of these stress hormones [35].

Obesity 

Stress and obesity are two increasingly common health issues 
that are intricately connected through multiple pathways. Firstly, 
stress can lead to poor decision-making related to food choices 
and lifestyle habits [71]. Secondly, stress influences behavior by 
promoting overeating, particularly of high-calorie, high-fat, and 
high-sugar foods, while simultaneously reducing physical activity 
and shortening sleep duration, all of which contribute to weight 
gain [72,73]. On a physiological level, stress activates the HPA axis 
and alters reward processing in the brain [74]. It may also influence 
the gut microbiome [75], further impacting metabolic health. Ad-
ditionally, stress stimulates the release of hormones and peptides 
including leptin, ghrelin, and neuropeptide Y [76,77] all of which 
play key roles in appetite regulation and energy balance. Obesity 
itself can also become a source of chronic stress due to widespread 
weight stigma [78], exacerbating the cycle. Occupational stress has 
been linked to lipid disturbances through HPA axis dysregulation, 
influencing lipid intake and metabolism [79]. Chronic stress ele-
vates cortisol levels, which in turn increases GC synthesis and glu-
cose availability, promotes visceral fat accumulation, enhances lip-
olysis, and elevates circulating fatty acids, leading to dyslipidemia 
and contributing further to obesity [80].

Hypertension

Stress-induced hypertension refers to elevated blood pressure 
triggered or worsened by psychological or physical stress. Acute 
stress activates the SNS and the HPA axis, leading to the release of 
stress hormones such as adrenaline and cortisol. These hormones 
increase heart rate, constrict blood vessels, and raise blood pres-
sure as part of the body’s “fight or flight” response [81]. While this 
response is adaptive in short-term situations, chronic stress can re-
sult in persistent activation of these systems, leading to sustained 
hypertension [82]. Repeated exposure to stress may also contrib-
ute to unhealthy behaviors like poor diet, lack of exercise, smoking, 
and disrupted sleep, further increasing blood pressure. In addition, 
stress alters vascular tone, endothelial function, and kidney activi-
ty, all of which play important roles in blood pressure regulation. 
Stress-induced hypertension, dyslipidemia, and endothelial dys-
function accelerate atherosclerosis. Managing stress through life-
style changes, relaxation techniques, regular physical activity, and 
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psychological support is essential in preventing and controlling 
stress-related hypertension. β-blockers can mitigate stress-driven 
vascular damage [83].

Hyperuricemia

Stress has been shown to induce hyperuricemia [84], a condi-
tion characterized by elevated levels of uric acid in the blood. Under 
restraint stress, there is a simultaneous increase in plasma uric acid 
levels and ROS generation, primarily due to Xanthine Oxidoreduc-
tase (XOR) activation in Visceral Adipose Tissue (VAT), liver, and in-
testine. This stress-induced oxidative stress is further amplified by 
upregulation of NADPH oxidase (NOX) subunits and a reduction in 
antioxidant enzyme activities in VAT. In addition to oxidative stress, 
stress also triggers lipolysis and inflammation in adipose tissue, de-
creases insulin sensitivity, and promotes a prothrombotic state [85]. 
These changes contribute to a metabolic environment that favors 
the development of hyperuricemia and related complications. Hy-
peruricemia has been shown to disrupt normal cortisol metabolism 
[86]. In this condition, the adrenal glands become less responsive to 
Adrenocorticotropic Hormone (ACTH), leading to reduced cortisol 
production, while corticosterone levels remain unaffected. This is 
linked to decreased mRNA expression of key cortisol-synthesizing 
enzymes, including aldosterone synthase, 11β-hydroxylase, and 
3β-hydroxysteroid dehydrogenase 1 [87]. Additionally, the reduced 
expression of hepatic 5α-reductase and renal 11β-hydroxysteroid 
dehydrogenase 2 further impairs cortisol clearance. Together, these 
disturbances constitute a cortisol metabolism disorder associated 
with hyperuricemia [86].

Bidirectional Relationship

Metabolic disorders, the components of metabolic syndrome 
including obesity, type II diabetes mellitus, hypertension, and dys-
lipidemia, are intricately linked with both physiological and psy-
chological stress [88]. These conditions are not only influenced by 
chronic stress but also act as significant contributors to stress-re-
lated pathologies, establishing a bidirectional and self-perpetuat-
ing cycle. Chronic emotional or occupational stress has been shown 
to increase the risk of developing metabolic syndrome [89,90]. In 
turn, the presence of metabolic dysfunctions can exacerbate stress 
responses by disrupting immune regulation and altering neuro-
chemical pathways in the brain [91], thereby heightening stress 
sensitivity. Thus, stress serves both as a precursor to and a con-
sequence of metabolic disease, reinforcing the complexity of their 
interrelationship. Metabolic dysfunction disrupts the body’s inter-
nal balance, activating the HPA axis, raising cortisol levels [92] that 
further aggravate metabolic disturbances by boosting blood sugar 
and fat storage. Living with a metabolic disorder often leads to psy-
chological stress [93], driven by health concerns such as diabetic 
complications, restrictive lifestyle changes, and body image dissat-
isfaction. This chronic stress elevates levels of cortisol and catechol-
amines, which in turn promote maladaptive behaviors like overeat-
ing, disrupted sleep, and reduced physical activity. These behaviors 
exacerbate insulin resistance and contribute to further weight gain, 
reinforcing the cycle of metabolic dysfunction. Obesity, in particu-

lar, is strongly linked to poorer mental health outcomes, including 
depression and subclinical depressive symptoms. Although the re-
lationship is bidirectional, evidence suggests that increased body 
weight more commonly leads to psychological distress rather than 
the reverse [94].

Prospects
The increasing recognition of chronic stress as a critical con-

tributor to metabolic dysfunction has spurred a growing interest 
in uncovering its underlying mechanisms, improving early detec-
tion, and developing targeted therapeutic strategies. Future re-
search directions are expected to focus on the integration of molec-
ular, behavioral, and systemic approaches to prevent and manage 
stress-induced metabolic diseases.

A central area of investigation involves the dysregulation of the 
HPA axis and heightened SNS activity, both of which are implicated 
in the pathogenesis of conditions such as obesity, insulin resistance, 
and cardiovascular disease. Identifying reliable biomarkers, such as 
pro-inflammatory cytokines (e.g., interleukin-6), acute phase reac-
tants (e.g., C-reactive protein), and cortisol secretion patterns, may 
enhance the early prediction and risk stratification of stress-related 
metabolic disorders [95]. Psychological stress influences caveolar 
function (which can induce metabolic syndrome and hyperurice-
mia [44,49]) in indirect but significant ways through systemic path-
ways. As our understanding of the mind-body connection deepens, 
this area is becoming an increasingly important focus of research 
at the cellular level [96]. Emerging research on epigenetic modifi-
cations and mitochondrial dysfunction suggests that chronic stress 
may induce long-term changes in metabolic regulation, potentially 
predisposing individuals to disease later in life. In particular, epi-
genetic regulation of genes involved in glucose metabolism and 
mitochondrial efficiency could serve as a mechanistic link between 
psychological stress and metabolic impairment [97].

Given the interindividual variability in stress response, person-
alized medicine represents a promising frontier. Future studies may 
focus on resilience profiling by identifying genetic variants (e.g., 
GC receptor polymorphisms), behavioral traits, and environmen-
tal factors that confer protection against stress-induced metabolic 
disturbances. In this context, digital health technologies, such as 
wearable devices and mobile applications, offer innovative tools for 
real-time monitoring of stress indicators (e.g., heart rate variabil-
ity, salivary cortisol) and delivering personalized, adaptive stress 
management strategies [98,99]. Psychological interventions such 
as Cognitive-Behavioral Therapy (CBT) and mindfulness-based 
stress reduction have shown efficacy in attenuating stress-induced 
inflammation and improving metabolic outcomes [100,101]. These 
approaches hold promise for integration into preventive and ther-
apeutic frameworks. Given that inflammation is estimated to me-
diate approximately 61.5% of the association between stress and 
metabolic syndrome [95], anti-inflammatory strategies warrant 
particular attention. Targeted therapies, including cytokine inhib-
itors (e.g., IL-1β antagonists), may be beneficial for individuals 
with prolonged exposure to psychosocial stress [102,103]. Nutri-
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tional interventions, such as diets rich in omega-3 fatty acids and 
polyphenols, can further mitigate oxidative stress and inflamma-
tion [104]. Socioeconomic and occupational stressors also play a 
significant role in the development of metabolic disorders. Future 
strategies should include workplace-level interventions, such as 
flexible scheduling and organizational stress reduction programs, 
aimed at lowering stress-related metabolic risk. In parallel, pub-
lic health policies addressing broader social determinants, such 
as income inequality and neighborhood disadvantage, are critical 
to reducing chronic stress on a population level [105,106]. From 
a clinical perspective, a multidisciplinary and integrative approach 
is essential. Healthcare providers should routinely assess stress 
exposure in patients with metabolic disorders and incorporate 
stress management into treatment plans. This may involve com-
bining pharmacologic interventions (e.g., β-blockers to reduce SNS 
overactivity) with lifestyle modifications [107], including exercise, 
nutritional guidance, and sleep hygiene. In summary, the interplay 
between stress and metabolic health represents a vital area for 
ongoing scientific and clinical exploration. Advancing our under-
standing of biological pathways, enhancing personalized care, and 
enacting systemic changes are essential for addressing the rising 
burden of stress-induced metabolic diseases. With the support of 
emerging technologies and integrative healthcare models, more ef-
fective and sustainable strategies for prevention and treatment are 
on the horizon.

Conclusion
Chronic stress plays a critical role in metabolic dysfunction 

through sustained activation of the HPA axis and SNS, and indirectly 
through disruption of caveolae, leading to hormonal imbalances, in-
flammation, and insulin resistance. These physiological effects are 
intensified by unhealthy behaviors such as poor diet, inactivity, and 
sleep disruption. The relationship between stress and metabolic 
disorders is bidirectional, forming a self-perpetuating cycle rein-
forced by cellular dysfunction, gut dysbiosis, and epigenetic chang-
es. Addressing this complex interaction requires a comprehensive 
approach, integrating early biomarker detection, psychological and 
pharmacological therapies, and public health strategies targeting 
social and occupational stressors. Ultimately, interdisciplinary ef-
forts are essential to disrupt this cycle and improve metabolic and 
mental health outcomes at both individual and societal levels.
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