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Abstract

Chronic stress is a significant public health concern, with occupational stress being a predominant global source. It is increasingly
recognized for its role in metabolic disorders, including obesity, insulin resistance, and hyperuricemia, through complex neuroendo-
crine, inflammatory, and behavioral mechanisms. This review explores the interplay between chronic stress and metabolic dysfunc-
tion, focusing on the dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic Nervous System (SNS), and
how stress-induced changes contribute to metabolic syndrome and hyperuricemia. Prolonged cortisol and catecholamine release
contributes to insulin resistance, visceral adiposity, and systemic inflammation, while stress-induced behavioral changes, such as
poor diet and physical inactivity, exacerbate metabolic disturbances. Additionally, emerging evidence highlights the roles of oxida-
tive stress, mitochondrial dysfunction, and caveolae impairment in stress-related metabolic diseases. The bidirectional relationship
between stress and metabolic disorders further complicates disease progression, as metabolic dysfunction itself amplifies stress
responses. Future research should prioritize biomarker discovery, epigenetic influences, and personalized interventions, including
both pharmacological and lifestyle-based strategies. Public health policies and workplace interventions are also essential to mit-
igate stress-induced metabolic risks. This review underscores the need for a multidisciplinary approach to address the growing

burden of stress-related metabolic diseases.
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Introduction

The detrimental effects of stress on both emotional and phys-
ical health [1] are well-documented and increasingly recognized
as significant public health concerns. Occupational stress, in par-
ticular, represents the predominant source of chronic stress glob-
ally and has steadily intensified over recent decades [2]. Elevated
levels of job-related stress, characterized by high demands coupled
with a perceived lack of control, have been consistently associat-
ed with heightened risks of cardiovascular events (e.g., myocar-
dial infarction, hypertension), metabolic disorders (e.g., obesity),

substance use disorders, anxiety, depression, and other mental and
physical health conditions [3]. According to Gallup’s State of the
Global Workplace 2023 report, 41% of global employees and 52%
of U.S. and East Asian reported experiencing significant stress on
the preceding day, underscoring the widespread prevalence of this
(https://www.gallup.com/workplace/349484 /state-of-the-
global-workplace.aspx). Among the various health consequences,

issue

stress-induced metabolic disorders have emerged as a critical area
of concern. These disorders result from the interplay of physiologi-
cal, behavioral, and molecular mechanisms. Stress is fundamentally
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a state of threatened homeostasis that elicits adaptive physiological
responses, centrally regulated by the brain. The neuroendocrine
systems of the Hypothalamic-Pituitary-Adrenal (HPA) axis [4] and
the Sympathetic Nervous System (SNS) play a central role in me-
diating these responses [5]. The key stress hormones cortisol and
the catecholamines (e.g., adrenaline and noradrenaline) are essen-
tial for short-term adaptation to stress. However, chronic activation
of these systems can override their protective functions. Sustained
elevations in cortisol and catecholamines contribute to systemic
dysregulation and are implicated in the pathogenesis of a range of
health conditions, including metabolic syndrome [6], obesity [7],
cancer [8], mental health disorders [9], hyperuricemia [10], car-
diovascular disease [11], and increased susceptibility to infections
[12].

Stress rapidly reprograms hepatic energy metabolism, with
effects that persist beyond the period of exposure [13]. The HPA
axis responds almost immediately to stress, triggering a cascade of
physiological responses [14]. Chronic psychosocial stress is associ-
ated with disrupted sleep and impaired metabolic health and may
contribute to the increasing global prevalence of subclinical hypo-
thyroidism [14]. Prolonged stress, such as war-related stress, can
disrupt systemic homeostasis, affecting metabolic processes, neu-
roendocrine regulation, and the function of the cardiovascular and
respiratory systems [15]. In experimental models, chronic restraint
stress alters hepatic metabolomic profiles, particularly the betaine
metabolism pathway, and modulates critical metabolic signaling
pathways, including INSR/PI3K/AKT/AMPK [16]. It also impacts
the gut microbiome, altering its diversity, composition, and meta-
bolic output [17], thereby influencing host systemic metabolism.
Stress-induced metabolic disorders result from a complex inter-
play of hormonal dysregulation, chronic inflammation, behavioral
changes, molecular disturbances, and structural alterations at the
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cellular level, such as those affecting caveolae. These interconnect-
ed mechanisms create a self-perpetuating cycle that progressively
impairs metabolic health. Understanding the biological pathways
that link chronic stress to metabolic dysfunction is therefore essen-
tial. Given the widespread prevalence of both chronic stress and
metabolic diseases in modern society, their potential pathophysi-
ological interaction represents a significant public health concern.
Effective prevention and management require a comprehensive
approach that includes stress reduction, nutritional interventions,
and regular physical activity. This review aims to examine the key
mechanisms underlying the relationship between chronic stress
and metabolic disorders, with a particular focus on metabolic syn-
drome and hyperuricemia.

Mechanisms Underlying Stress-Induced Met-
abolic Disorders

Chronic psychological stress disrupts metabolic balance
through neuroendocrine, immune, and behavioral mechanisms
[18,19]. Persistent activation of the HPA axis elevates cortisol,
leading to insulin resistance, abdominal obesity, and other meta-
bolic syndrome features. The Glucocorticoids (GCs) and the cate-
cholamines act synergistically to raise blood glucose levels [20] as
does the ramp-up of cardiovascular output by the catecholamines
[21]. Concurrent stimulation of the SNS raises catecholamine levels,
further impairing metabolism and promoting inflammation. Behav-
ioral changes such as poor diet, inactivity, and inadequate sleep ex-
acerbate these effects. At the cellular level, stress-related hormones
and cytokines hinder insulin signaling, damage mitochondria, and
elevate oxidative stress [22]. These processes contribute to meta-
bolic disorders, including hyperuricemia, highlighting the complex
and multifactorial nature of stress-induced metabolic dysfunction
(Figure 1).
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Figure 1: Schematic illustration of stress induced mechanisms contributing to metabolic disorders.
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Hormonal Imbalances via HPA Axis and SNS Activation

Chronic stress activates the HPA axis, leading to sustained cor-
tisol secretion. Cortisol promotes gluconeogenesis and lipolysis,
increasing blood glucose and free fatty acids. Over time, this con-
tributes to insulin resistance and hyperglycemia [23], and hyper-
tension [24], hallmarks of metabolic syndrome. Cortisol may be
associated with uric acid levels under physical stress [25]. SNS acti-
vation releases catecholamines, which enhance lipolysis and gluco-
neogenesis [26], and mobilize glucose and fatty acids, exacerbating
oxidative stress and inflammation. Prolonged SNS activity elevates
blood pressure and free fatty acids, exacerbating hypertension
and insulin resistance [27], and hyperuricemia [28]. HPA activity
promotes visceral fat storage, which is metabolically active and se-
cretes pro-inflammatory cytokines [29]. This chronic low-grade in-
flammation impairs insulin signaling, linking obesity to insulin re-
sistance and metabolic syndrome [30]. Cortisol and catecholamine
increase uric acid levels through enhanced purine degradation and
reduced renal excretion [31]. Cortisol contributes via protein ca-
tabolism and insulin resistance, while catecholamines impair renal
clearance through vasoconstriction and altered tubular handling.

Glucocorticoid Resistance

Chronic stress contributes to metabolic dysfunction through
the development of GC resistance, which diminishes cortisol’s an-
ti-inflammatory effects [32]. In glucocorticoid resistance, despite
reduced GC signaling in some tissues, visceral adipose tissue often
remains sensitive, contributing to the redistribution of fat toward
visceral depots, increasing cardiovascular risk [33]. This resistance
allows inflammation to persist, particularly within visceral adipose
tissue, where immune cells actively contribute to tissue damage,
atherosclerosis, and insulin resistance. Inflammatory cytokines,
such as TNF-q, IL-6, and CRP, further disrupt insulin receptor sig-
naling, impairing glucose uptake [34] in the liver and skeletal mus-
cles. Concurrently, elevated gluconeogenesis and increased levels of
free fatty acids exacerbate hepatic insulin resistance and contribute
to the development of Non-Alcoholic Fatty Liver Disease (NAFLD)
[35]. Persistent insulin resistance places chronic demand on pan-
creatic 3-cells, which may ultimately lead to -cell exhaustion and
the progression of type 2 diabetes. Additionally, chronic stress in-
creases the production of Reactive Oxygen Species (ROS) [36], caus-
ing mitochondrial damage and further impairing insulin signaling
pathways [37]. Together, these stress-induced inflammatory and
oxidative processes play a central role in the pathogenesis of insulin
resistance and related metabolic disorders.

Behavioral and Lifestyle Factors

Beyond hormonal dysregulation, stress significantly influ-
ences behavioral patterns that contribute to metabolic disorders.
Stress-induced comfort eating leads to increased consumption of
high-calorie, sugar- and fat-rich foods, a behavior mediated through
hypothalamic reward pathways [38] and associated with weight
gain. Additionally, stress-related sleep disturbances disrupt the bal-
ance of leptin (a satiety hormone) and ghrelin (a hunger hormone),
enhancing appetite and food cravings [39]. Reduced physical activ-
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ity due to stress exacerbates energy imbalance [40], accelerating
obesity and metabolic complications.

Gut Dysbiosis

Stress induces gut microbiota dysbiosis [41], increasing intes-
tinal permeability and disrupting uric acid metabolism [42]. This
allows endotoxins to enter the bloodstream, causing metabolic en-
dotoxemia [43], which drives inflammation, insulin resistance and
hyperuricemia [44].

Epigenetic Changes

Chronic stress may induce epigenetic changes (e.g., DNA meth-
ylation) in genes regulating glucose/lipid metabolism [45], predis-
posing individuals to metabolic diseases.

Oxidative Stress and Mitochondrial Dysfunction

Chronic stress amplifies oxidative stress, contributing to mi-
tochondrial dysfunction and impaired insulin signaling. Stress-in-
duced TNF-q, IL-6, and CRP promote insulin resistance and endo-
thelial dysfunction [46]. Oxidative stress from prolonged cortisol
exposure damages mitochondria, impairing energy metabolism
[47].

Caveolar Dysfunction

Psychological stress exerts its effects indirectly, but meaning-
fully, on caveolar function through systemic pathways. Caveolae are
small plasma membrane invaginations that serve as critical plat-
forms for cellular adaptation to various stressors [48]. Their struc-
ture and function are deeply influenced by mechanical, oxidative,
and metabolic stress, with widespread implications for metabolic
diseases [49]. Caveolae are critical regulators of cellular responses
to stress. Dysfunction of caveolae is linked to a range of diseases,
including cardiovascular disorders, metabolic syndrome, and hy-
peruricemia, highliting their potential as therapeutic targets for
enhancing cellular resilience [44,50].

Mechanical stress induces caveolae formation [51]. Caveolae
flatten in response to membrane tension, acting as protective buf-
fers against mechanical damage [52]. This mechanoprotective func-
tion buffers cells against rupture and damage. It relies on the cave-
olin-1 (Cav1) protein for maintaining caveolar structure. Deficiency
or dysfunction in caveolae increases susceptibility to diseases like
muscular dystrophy, pulmonary fibrosis, and atherosclerosis [53].
Caveolae compartmentalize key components of redox signaling by
localizing ROS-producing enzymes and antioxidant systems, main-
taining redox homeostasis [54]. They also regulate key signaling
pathways (e.g., MAPK, AKT) involved in cell survival and apoptosis.
Disruption of these roles contributes to oxidative stress and meta-
bolic dysfunction [55]. Caveolae are central to lipid, eNOS, uric acid
and glucose metabolism [56,57]. They facilitate cholesterol uptake,
insulin receptor organization, and glucose or uric acid transporter
function. Metabolic stressors, resulting from excess nutrients such
as hyperlipidaemia and diabetes, impair these processes, promot-
ing insulin resistance and metabolic syndrome [49]. Caveolae can
help endothelial cells adapt to shear stress from blood flow, and
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loss of caveolae can disrupt vascular tone and promotes hyperten-
sion [58]. Overall, caveolae serve as crucial integrators of stress
signals. Their dysfunction under chronic stress conditions plays a
significant role in the development of metabolic syndrome, cardio-
vascular disease, hypertension, and hyperuricemia [49,57].

Clinical Manifestations of Metabolic Diseases
under Chronic Stress

Chronic stress is a risk factor for the development of metabolic
diseases. Meta-analysis links anxiety/stress to 7-14% higher odds
of metabolic syndrome [59]. Chronic stress disrupts energy homeo-
stasis, promoting metabolic diseases, and can exacerbate existing
conditions, making them harder to manage. Patients under chronic
stress might have poorer outcomes, and managing stress could be
part of treatment plans. Furthermore, the interplay between psy-
chological factors and physiological changes, such as poor sleep
and diet, and sedentary lifestyle, creates additional risk factors for
metabolic disorders. Inflammation can link stress with metabolic
diseases. These interconnected mechanisms culminate in glucose
metabolism, visceral adiposity, inflammation, and behaviors that
worsen metabolic health. The cluster of conditions, including in-
sulin resistance, obesity, and dyslipidemia, resulting from systemic
dysregulation may also exert synergistic effects on the body’s re-
sponse to stress.

Hyperglycemia and Diabetes

The effects of stress on type I diabetes remain contradicto-
ry. Some retrospective human studies suggest that psychological
stress may precipitate type I diabetes as various stressors can ei-
ther trigger or prevent the onset in experimental diabetes animal
models [60]. Chronic stress impairs GLUT4 translocation and pro-
motes hepatic gluconeogenesis [61], and reliably produces hyper-
glycemia which induces type II diabetes. At the cellular level, both
environmental and internal stressors contribute to insulin resis-
tance and [-cell dysfunction. These stressors activate molecular
pathways that intensify Endoplasmic Reticulum (ER) stress, the
integrated stress response, oxidative stress, and impair autophagy
[62]. Although these stress-responsive pathways are interconnect-
ed, their individual roles in maintaining glucose homeostasis and
preserving B-cell function remain under investigation [63]. Hyper-
insulinism itself can cause elevated ER luminal hydrogen peroxide
(H20,) production, leading to mild ER stress and reduced cell via-
bility, though additional harmful factors beyond H,0, are involved
in B-cell dysfunction [64]. Other stress-induced pathologies that
can drive diabetes progression include dysregulated lipid signaling,
mitochondrial oxidative stress, ER stress, and localized inflamma-
tion [65]. Catecholamines are the primary hormonal mediators of
the stress response. Although they do not typically cause adverse
effects in the acute phase, prolonged exposure can disrupt glu-
cose homeostasis, contributing to chronic hyperglycemia, insulin
resistance, and the eventual development of type II diabetes [66].
In skeletal muscle, GCs inhibit the insulin-induced translocation of
GLUT4 to the cell membrane, reducing glucose uptake and increas-
ing blood glucose levels [67]. In white adipose tissue, GCs promote
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lipolysis, generating glycerol (a gluconeogenic substrate) and lead-
ing to the accumulation of nonesterified fatty acids in muscle cells
[68]. These fatty acids impair insulin signaling, further diminishing
glucose uptake and perpetuating a hyperglycemic state. Addition-
ally, corticosteroids inhibit pancreatic -cells from producing and
secreting insulin [69]. Interestingly, acute hyperglycemia during
stress may serve as an adaptive mechanism. It provides readily
available energy to the brain and immune system during injury,
infection, or stress, functioning as part of an evolutionary survival
response [70]. However, when stress becomes chronic, persistent
hyperglycemia contributes to insulin resistance and eventually type
II diabetes. Additionally, diabetes may also cause abnormalities in
the regulation of these stress hormones [35].

Obesity

Stress and obesity are two increasingly common health issues
that are intricately connected through multiple pathways. Firstly,
stress can lead to poor decision-making related to food choices
and lifestyle habits [71]. Secondly, stress influences behavior by
promoting overeating, particularly of high-calorie, high-fat, and
high-sugar foods, while simultaneously reducing physical activity
and shortening sleep duration, all of which contribute to weight
gain [72,73]. On a physiological level, stress activates the HPA axis
and alters reward processing in the brain [74]. It may also influence
the gut microbiome [75], further impacting metabolic health. Ad-
ditionally, stress stimulates the release of hormones and peptides
including leptin, ghrelin, and neuropeptide Y [76,77] all of which
play key roles in appetite regulation and energy balance. Obesity
itself can also become a source of chronic stress due to widespread
weight stigma [78], exacerbating the cycle. Occupational stress has
been linked to lipid disturbances through HPA axis dysregulation,
influencing lipid intake and metabolism [79]. Chronic stress ele-
vates cortisol levels, which in turn increases GC synthesis and glu-
cose availability, promotes visceral fat accumulation, enhances lip-
olysis, and elevates circulating fatty acids, leading to dyslipidemia
and contributing further to obesity [80].

Hypertension

Stress-induced hypertension refers to elevated blood pressure
triggered or worsened by psychological or physical stress. Acute
stress activates the SNS and the HPA axis, leading to the release of
stress hormones such as adrenaline and cortisol. These hormones
increase heart rate, constrict blood vessels, and raise blood pres-
sure as part of the body’s “fight or flight” response [81]. While this
response is adaptive in short-term situations, chronic stress can re-
sult in persistent activation of these systems, leading to sustained
hypertension [82]. Repeated exposure to stress may also contrib-
ute to unhealthy behaviors like poor diet, lack of exercise, smoking,
and disrupted sleep, further increasing blood pressure. In addition,
stress alters vascular tone, endothelial function, and kidney activi-
ty, all of which play important roles in blood pressure regulation.
Stress-induced hypertension, dyslipidemia, and endothelial dys-
function accelerate atherosclerosis. Managing stress through life-
style changes, relaxation techniques, regular physical activity, and
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psychological support is essential in preventing and controlling
stress-related hypertension. $-blockers can mitigate stress-driven
vascular damage [83].

Hyperuricemia

Stress has been shown to induce hyperuricemia [84], a condi-
tion characterized by elevated levels of uric acid in the blood. Under
restraint stress, there is a simultaneous increase in plasma uric acid
levels and ROS generation, primarily due to Xanthine Oxidoreduc-
tase (XOR) activation in Visceral Adipose Tissue (VAT), liver, and in-
testine. This stress-induced oxidative stress is further amplified by
upregulation of NADPH oxidase (NOX) subunits and a reduction in
antioxidant enzyme activities in VAT. In addition to oxidative stress,
stress also triggers lipolysis and inflammation in adipose tissue, de-
creases insulin sensitivity, and promotes a prothrombotic state [85].
These changes contribute to a metabolic environment that favors
the development of hyperuricemia and related complications. Hy-
peruricemia has been shown to disrupt normal cortisol metabolism
[86]. In this condition, the adrenal glands become less responsive to
Adrenocorticotropic Hormone (ACTH), leading to reduced cortisol
production, while corticosterone levels remain unaffected. This is
linked to decreased mRNA expression of key cortisol-synthesizing
enzymes, including aldosterone synthase, 11B-hydroxylase, and
3B-hydroxysteroid dehydrogenase 1 [87]. Additionally, the reduced
expression of hepatic 5a-reductase and renal 113-hydroxysteroid
dehydrogenase 2 further impairs cortisol clearance. Together, these
disturbances constitute a cortisol metabolism disorder associated
with hyperuricemia [86].

Bidirectional Relationship

Metabolic disorders, the components of metabolic syndrome
including obesity, type II diabetes mellitus, hypertension, and dys-
lipidemia, are intricately linked with both physiological and psy-
chological stress [88]. These conditions are not only influenced by
chronic stress but also act as significant contributors to stress-re-
lated pathologies, establishing a bidirectional and self-perpetuat-
ing cycle. Chronic emotional or occupational stress has been shown
to increase the risk of developing metabolic syndrome [89,90]. In
turn, the presence of metabolic dysfunctions can exacerbate stress
responses by disrupting immune regulation and altering neuro-
chemical pathways in the brain [91], thereby heightening stress
sensitivity. Thus, stress serves both as a precursor to and a con-
sequence of metabolic disease, reinforcing the complexity of their
interrelationship. Metabolic dysfunction disrupts the body’s inter-
nal balance, activating the HPA axis, raising cortisol levels [92] that
further aggravate metabolic disturbances by boosting blood sugar
and fat storage. Living with a metabolic disorder often leads to psy-
chological stress [93], driven by health concerns such as diabetic
complications, restrictive lifestyle changes, and body image dissat-
isfaction. This chronic stress elevates levels of cortisol and catechol-
amines, which in turn promote maladaptive behaviors like overeat-
ing, disrupted sleep, and reduced physical activity. These behaviors
exacerbate insulin resistance and contribute to further weight gain,
reinforcing the cycle of metabolic dysfunction. Obesity, in particu-
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lar, is strongly linked to poorer mental health outcomes, including
depression and subclinical depressive symptoms. Although the re-
lationship is bidirectional, evidence suggests that increased body
weight more commonly leads to psychological distress rather than
the reverse [94].

Prospects

The increasing recognition of chronic stress as a critical con-
tributor to metabolic dysfunction has spurred a growing interest
in uncovering its underlying mechanisms, improving early detec-
tion, and developing targeted therapeutic strategies. Future re-
search directions are expected to focus on the integration of molec-
ular, behavioral, and systemic approaches to prevent and manage
stress-induced metabolic diseases.

A central area of investigation involves the dysregulation of the
HPA axis and heightened SNS activity, both of which are implicated
in the pathogenesis of conditions such as obesity, insulin resistance,
and cardiovascular disease. Identifying reliable biomarkers, such as
pro-inflammatory cytokines (e.g., interleukin-6), acute phase reac-
tants (e.g., C-reactive protein), and cortisol secretion patterns, may
enhance the early prediction and risk stratification of stress-related
metabolic disorders [95]. Psychological stress influences caveolar
function (which can induce metabolic syndrome and hyperurice-
mia [44,49]) in indirect but significant ways through systemic path-
ways. As our understanding of the mind-body connection deepens,
this area is becoming an increasingly important focus of research
at the cellular level [96]. Emerging research on epigenetic modifi-
cations and mitochondrial dysfunction suggests that chronic stress
may induce long-term changes in metabolic regulation, potentially
predisposing individuals to disease later in life. In particular, epi-
genetic regulation of genes involved in glucose metabolism and
mitochondrial efficiency could serve as a mechanistic link between
psychological stress and metabolic impairment [97].

Given the interindividual variability in stress response, person-
alized medicine represents a promising frontier. Future studies may
focus on resilience profiling by identifying genetic variants (e.g.,
GC receptor polymorphisms), behavioral traits, and environmen-
tal factors that confer protection against stress-induced metabolic
disturbances. In this context, digital health technologies, such as
wearable devices and mobile applications, offer innovative tools for
real-time monitoring of stress indicators (e.g., heart rate variabil-
ity, salivary cortisol) and delivering personalized, adaptive stress
management strategies [98,99]. Psychological interventions such
as Cognitive-Behavioral Therapy (CBT) and mindfulness-based
stress reduction have shown efficacy in attenuating stress-induced
inflammation and improving metabolic outcomes [100,101]. These
approaches hold promise for integration into preventive and ther-
apeutic frameworks. Given that inflammation is estimated to me-
diate approximately 61.5% of the association between stress and
metabolic syndrome [95], anti-inflammatory strategies warrant
particular attention. Targeted therapies, including cytokine inhib-
itors (e.g., IL-1f antagonists), may be beneficial for individuals
with prolonged exposure to psychosocial stress [102,103]. Nutri-
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tional interventions, such as diets rich in omega-3 fatty acids and
polyphenols, can further mitigate oxidative stress and inflamma-
tion [104]. Socioeconomic and occupational stressors also play a
significant role in the development of metabolic disorders. Future
strategies should include workplace-level interventions, such as
flexible scheduling and organizational stress reduction programs,
aimed at lowering stress-related metabolic risk. In parallel, pub-
lic health policies addressing broader social determinants, such
as income inequality and neighborhood disadvantage, are critical
to reducing chronic stress on a population level [105,106]. From
a clinical perspective, a multidisciplinary and integrative approach
is essential. Healthcare providers should routinely assess stress
exposure in patients with metabolic disorders and incorporate
stress management into treatment plans. This may involve com-
bining pharmacologic interventions (e.g., -blockers to reduce SNS
overactivity) with lifestyle modifications [107], including exercise,
nutritional guidance, and sleep hygiene. In summary, the interplay
between stress and metabolic health represents a vital area for
ongoing scientific and clinical exploration. Advancing our under-
standing of biological pathways, enhancing personalized care, and
enacting systemic changes are essential for addressing the rising
burden of stress-induced metabolic diseases. With the support of
emerging technologies and integrative healthcare models, more ef-
fective and sustainable strategies for prevention and treatment are
on the horizon.

Conclusion

Chronic stress plays a critical role in metabolic dysfunction
through sustained activation of the HPA axis and SNS, and indirectly
through disruption of caveolae, leading to hormonal imbalances, in-
flammation, and insulin resistance. These physiological effects are
intensified by unhealthy behaviors such as poor diet, inactivity, and
sleep disruption. The relationship between stress and metabolic
disorders is bidirectional, forming a self-perpetuating cycle rein-
forced by cellular dysfunction, gut dysbiosis, and epigenetic chang-
es. Addressing this complex interaction requires a comprehensive
approach, integrating early biomarker detection, psychological and
pharmacological therapies, and public health strategies targeting
social and occupational stressors. Ultimately, interdisciplinary ef-
forts are essential to disrupt this cycle and improve metabolic and
mental health outcomes at both individual and societal levels.
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