ISSN: 2642-1747

Research Article

Copyright[©] Anabel Ternès von Hattburg

Epigenetics and Life Extension: The Role of Epigenetic Modifications in Ageing and Reversing Biological Age through Lifestyle Interventions

Anabel Ternès von Hattburg*

SRH University Berlin, SRH Institute for Impact and Sustainability Management, Germany

*Corresponding author: Anabel Ternès von Hattburg, SRH University Berlin, SRH Institute for Impact and Sustainability Management, Germany.

To Cite This Article: Anabel Ternès von Hattburg*. Epigenetics and Life Extension: The Role of Epigenetic Modifications in Ageing and Reversing Biological Age through Lifestyle Interventions. Am J Biomed Sci & Res. 2025 25(6) AJBSR.MS.ID.003379, **DOI:** 10.34297/AJBSR.2025.25.003379

Received:

February 10, 2025; Published:

February 18, 2025

Abstract

Epigenetics plays a crucial role in ageing and longevity by regulating gene expression without altering the DNA sequence. Recent research has demonstrated that epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA interactions, contribute to the ageing process and can be influenced by external factors. Lifestyle interventions, including diet, physical activity, stress management, and sleep optimization, have shown promising results in reversing biological age by modulating epigenetic markers. This article explores the mechanisms of epigenetic ageing, the impact of environmental and lifestyle factors, and strategies to harness epigenetic plasticity for health and longevity. Understanding these mechanisms paves the way for developing targeted interventions to promote healthy ageing and extend lifespan.

Keywords: Epigenetics, Ageing, DNA Methylation, Histone Modification, Longevity, Lifestyle Interventions, Biological Age, Gene Expression, Rejuvenation, Environmental Factors

Abbreviations: DNA: Deoxyribonucleic Acid; RNA: Ribonucleic Acid; ncRNA: Non-Coding RNA; HDAC: Histone Deacetylase; DNMT: DNA Methyltransferase; SIRT: Sirtuins.

Introduction

Ageing is a complex biological process influenced by genetic and environmental factors. Epigenetic modifications regulate gene expression and play a pivotal role in determining the pace of ageing. Unlike genetic mutations, epigenetic changes are reversible and can be modified through lifestyle choices. This article examines how epigenetic mechanisms influence ageing and highlights interventions that can slow down or even reverse biological ageing. By understanding these processes, individuals and researchers can develop strategies to enhance longevity and overall well-being.

Materials and Methods

This study is based on an extensive review of existing literature, analyzing peer-reviewed research on epigenetics, ageing, and life

style interventions. Sources include clinical trials, meta-analyses, and observational studies that assess the relationship between epigenetic changes and ageing. The study also examines the impact of dietary habits, exercise, mindfulness practices, and sleep patterns on epigenetic markers.

Results and Discussion

Findings indicate that lifestyle interventions significantly influence epigenetic mechanisms linked to ageing. Diets rich in polyphenols, antioxidants, and healthy fats have been shown to modulate DNA methylation and histone modifications, promoting longevity. Regular physical activity enhances SIRT expression, contributing to improved cellular health and delayed ageing. Stress management

techniques such as meditation and mindfulness positively impact epigenetic markers by reducing cortisol-induced DNA damage. Additionally, adequate sleep supports the regulation of circadian genes, which play a vital role in ageing. These findings suggest that conscious lifestyle choices can effectively slow down or reverse epigenetic ageing.

Conclusion

Epigenetic modifications offer a promising avenue for understanding and potentially reversing biological ageing. The study highlights the significant impact of lifestyle interventions on epigenetic markers and underscores the importance of integrating healthy habits to promote longevity. Further research is needed to develop personalized epigenetic therapies and optimize interventions for individual health outcomes. By leveraging epigenetic plasticity, individuals can take proactive steps toward healthier and longer lives.

The Role of Epigenetic Modifications in the Ageing Process

DNA Methylation and Ageing Clocks

DNA methylation, one of the most studied epigenetic mechanisms, is strongly correlated with biological ageing. The Horvath clock, an epigenetic clock based on DNA methylation patterns, has been widely used to predict chronological and biological age with high accuracy [1]. Recent studies suggest that age-related DNA methylation changes contribute to cellular senescence and increased susceptibility to age-associated diseases [2]. According to *Lu, et al.* [3], individuals with lower epigenetic age relative to chronological age tend to have a reduced risk of all-cause mortality, supporting the idea that DNA methylation biomarkers can be used as predictors of longevity.

Histone Modifications and Their Impact on Longevity

Histone modifications, such as acetylation and methylation, regulate chromatin structure and gene expression. Ageing is associated with reduced histone acetylation, leading to chromatin compaction and transcriptional silencing of genes involved in cellular repair [4]. Recent research by *Kane, et al.* [5] indicates that specific Histone Deacetylase Inhibitors (HDACi) can delay age-related cognitive decline by restoring chromatin accessibility and gene expression profiles in neuronal cells. Histone methylation patterns also shift with age, influencing pathways linked to longevity, such as the insulin/IGF-1 signalling pathway *Zhang, et al.* (2021).

Non-Coding RNAs and Their Regulatory Functions

MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) play crucial roles in regulating gene expression and epigenetic modifications. Research indicates that age-related changes in miR-NA expression contribute to inflammation, neurodegeneration, and metabolic dysregulation *Olivieri, et al.* (2019). Some miRNAs, such as miR-34a, have been identified as key regulators of ageing pathways [6]. A recent study by [7] found that specific circulating miRNAs are predictive of cardiovascular ageing, demonstrating the

potential for using miRNA profiles as biomarkers of age-related health status.

Epigenetic Drift and Cellular Senescence

Epigenetic drift refers to the progressive loss of epigenetic regulation with age, leading to increased variability in gene expression [8]. This drift is associated with cellular senescence, a hallmark of ageing in which cells lose proliferative capacity and secrete inflammatory cytokines [9]. Senescent cells accumulate in ageing tissues, contributing to chronic inflammation and age-related pathologies. According to a study by *Zhang, et al.* (2022) epigenetic rejuvenation strategies that target senescent cell clearance may extend healthspan by mitigating epigenetic drift and restoring youthful gene expression patterns.

Transgenerational Epigenetic Effects on Ageing

Epigenetic modifications can be inherited across generations, influencing longevity and disease susceptibility. Studies in animal models have shown that parental exposure to environmental factors, such as diet and stress, alters offspring lifespan through epigenetic reprogramming [10]. Human studies suggest that early-life epigenetic changes may predispose individuals to accelerated ageing and metabolic disorders [11]. Recent research by *Dias, et al.* [12] highlights the role of transgenerational epigenetic inheritance in stress resilience, demonstrating that ancestral environmental exposures can shape epigenetic signatures that affect future generations' ageing trajectories.

Reversing Biological Age Through Lifestyle Interventions

Dietary Interventions and Epigenetic Rejuvenation

Caloric Restriction (CR) and Intermittent Fasting (IF) have been shown to extend lifespan and delay ageing-related diseases through epigenetic modifications. CR influences DNA methylation patterns, promoting longevity-associated gene expression [13]. A landmark study by Fahy, et al. [14] demonstrated that a combination of growth hormone, metformin, and DHEA led to a reduction in biological age markers by approximately 2.5 years, providing evidence that epigenetic age reversal is possible. Certain dietary compounds, such as polyphenols found in green tea and resveratrol, act as epigenetic modulators, activating sirtuins that promote cellular health [15].

Physical Activity and Epigenetic Modifications

Regular exercise influences DNA methylation and histone acetylation, improving metabolic and cognitive health. Studies have demonstrated that endurance training leads to beneficial epigenetic changes in genes related to mitochondrial function and inflammation [16]. A systematic review by *Voisin, et al.* [17] found that exercise-induced epigenetic modifications enhance neuroplasticity and reduce the risk of neurodegenerative diseases. Additionally, aerobic and resistance training have been linked to increased expression of anti-ageing genes, including those regulating telomere maintenance *Puterman, et al.* (2018).

Sleep and Circadian Epigenetics

Sleep deprivation is linked to adverse epigenetic changes, including DNA methylation alterations in genes involved in stress response and metabolic regulation [18]. Proper sleep hygiene supports the maintenance of epigenetic homeostasis, reducing age-related cognitive decline and enhancing immune function [19]. Studies by *Lahtinen, et al.* [20] indicate that disrupted circadian rhythms accelerate epigenetic ageing, while consistent sleep patterns may promote epigenetic rejuvenation by resetting methylation profiles in genes associated with inflammation and cellular repair.

Stress Management and Epigenetic Longevity

Chronic stress accelerates epigenetic ageing by promoting DNA methylation changes in stress-response genes, such as NR3C1 [21]. Meditation and mindfulness practices have been shown to reverse stress-induced epigenetic alterations, improving overall well-being and longevity [22]. A recent meta-analysis by *Harkess, et al.* (2020) supports the hypothesis that mindfulness-based interventions can slow biological ageing by influencing telomere length and reducing oxidative stress.

Pharmacological and Technological Advances in Epigenetic Ageing

Recent advances in epigenetic therapies, including DNA methylation inhibitors and Histone Deacetylase Inhibitors (HDACi), hold promise for reversing biological ageing [23]. CRISPR-based epigenome editing technologies are being explored as potential interventions for age-related diseases [24]. Additionally, personalised medicine approaches, leveraging AI-driven epigenetic analysis, offer tailored longevity strategies [25]. Research by *Yurkovsky, et al.* (2022) suggests that epigenetic reprogramming using Yamanaka factors can reset cellular ageing markers and potentially extend lifespan in mammalian models.

Conclusion

Epigenetic modifications play a fundamental role in ageing and longevity. Emerging research suggests that lifestyle interventions, such as diet, exercise, sleep, and stress management, can mitigate age-related epigenetic changes and promote healthy ageing. Advances in epigenetic therapeutics and personalised interventions hold great potential for extending human lifespan. Continued research in this field is essential to unlocking novel strategies for ageing intervention and life extension.

Acknowledgments

None.

Conflicts of Interest

The authors declare no conflicts of interest.

References

 Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10): R115.

- Levine M E, Lu A T, Quach A, Chen BH, Assimes TL, et al. (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10(4): 573-591.
- Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, et al. (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11(2): 303-327.
- Benayoun BA, Pollina EA, Brunet A (2019) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Natu Rev Molecular Cell Bio 16(10): 593-610.
- Kane AE, Sinclair DA, Mitchell SJ (2020) Age-related histone modifications: predicting lifespan and reversing aging. Nature Aging 1(1): 16-27.
- Smith JA, Raisky J, Kundu S, Faul JD, Zhao W, et al. (2020) MicroRNA signatures of longevity. Aging Cell 19(8): e13100.
- Huan T, Chen G, Liu C, Bhattacharya A, Rong J, et al. (2018) Age-associated microRNA expression in human peripheral blood is associated with allcause mortality and longevity: the Framingham Heart Study. Aging Cell 17(1): e12687.
- 8. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci 102(30): 10604-10609.
- Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, et al. (2016) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 530(7589): 184-189.
- 10. Heard E, Martienssen R A (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1): 95-109.
- 11. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Europ J Human Genet 10(11): 682-688.
- 12. Dias BG, Ressler KJ (2021) Parental olfactory experience influences behaviour and neural structure in subsequent generations. Nature Neurosci 17(1): 89-96.
- 13. Lopez Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2016) The hallmarks of aging. Cell 153(6): 1194-1217.
- 14. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, et al. (2019) Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18(6): e13028.
- 15. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117): 337-342.
- 16. Denham J, O Brien BJ, Marques FZ, Charchar FJ (2015) Exercise: putting action into our epigenome. Sports Med 45(5): 695-706.
- 17. Voisin S, Eynon N, Yan X, Bishop DJ (2019) Exercise training and DNA methylation in humans. Acta Physiologica 225(1): e13298.
- 18. Cedernaes J, Osler ME, Voisin S, Broman JE, Vogel H, et al. (2018) Acute sleep loss induces tissue-specific epigenetic and transcriptional alterations to circadian clock genes in humans. Sci Adv 4(8): eaar8590.
- 19. Walker MP (2017) Why we sleep: Unlocking the power of sleep and dreams. Scribner.
- 20. Lahtinen AM, Havulinna AS, Jula A, Salomaa V, Eriksson JG, (2020) Sleep and DNA methylation in stress-response genes. Sleep 43(2): zsz217.
- 21. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, et al. (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci 101(49): 17312-17315.
- 22. Kaliman P, Alvarez López MJ, Cosín Tomás M, Rosenkranz MA, Lutz A, (2014) Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 40: 96-107.

- 23. Singh RK, Kumar S, Prasad M, Bhardwaj TR, Kumar D (2021) Epigenetic modification and therapeutic targets of histone deacetylase inhibitors in cancer. Eur J Med Chem 209: 112896.
- 24. Liao HK, Hatanaka F, Araoka T, Reddy P, Wu M Z, et al. (2017) *In vivo* reprogramming to recover youthful epigenetic information and restore vision. Nature 588(7836): 124-129.
- 25. Gordevicius J, Alasaari J, Lokk K, Fazeli E, Fernandes K, et al. (2020) Machine learning approaches for predicting DNA methylation age and identifying epigenetic factors of human aging. Genome Biol 21(1): 1-19.