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Abstract

The structural scheme a piezo engine nano displacement is obtained for biomedical science and research. The structural structural scheme a
piezo engine nano displacement is constructed by method mathematical physics. In biomedical science and research, the nano displacements are
determined.
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Introduction
The ordinary differential equation of piezoengine [8-60] is
The structural scheme a piezo engine nano displacement is

constructed for biomedical science and research [1-23]. A piezo-
engine is used in scanning microscopy, microsurgery, damping vi-

written

2
bration, adaptive optics system for biomedical science and research dx
[24-64].
here E(x,s), X, s, y are the transform of the displacement,
Method its coordinate and parameter, the propagation coefficient and the

For the structural sheme a piezoengine is used method of math- general length / = { 1,8,b of piezoengine nanodisplacement.

ematical physics with the solution the reverse piezoeffect equation
[3-39] and its differential equation

Structural Scheme

For the longitudinal piezoengine the solution of its differential

at the voltage control
_ E
S, =d E, +S,-,-T,-
at the current the control

D
Si =g,D, +5; T/

here s, £,.p,, 1, 4, g, st,sP are the relative displacement,
the electric field strength, the electric induction, the mechanical
field strength, piezomodules, the elastic compliances, and the low
indexes i, j, m.

equation is determined

E(x,5)={Z, (s)sh[ (5 —x)7 | +Z, (s)sh(xr)} /sh (o)

The system boundary conditions for the longitudinal piezoen-
gine has the form
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1 dE(x,s) d
T.(6,s)=— -3F
3( ) sf3 dx s sf} S(S)

The transform of the force causes displacement for the longitu-

dinal piezoengine has the form

F(s) _ d,S,E, (s)
533
here §, is cross sectional area.

Its longitudinal reverse coefficient

E
os;

@

The structural model of the longitudinal piezoengine has the
form

~F(s)+(25)
=, (5)=(M,57) X[d33E ~[r/sh(57)] }
x[ch 57)E (s)-E, (s)]

~F(s)+(25)
E:(s)= (M) {dE ~[7/sh(er)] }
x[ ch(87)Z, (s)-E,(s)]
1311; = st /So

For the shif piezoengine the solution of its differential equation
is determined

E(x,s)z{E sh(x;/)}/sh(by)

The system of conditions for the shift piezoengine has the form

)sh[(b—x)y]+E,(s

1 d=(x,s d
n(05)= L EED g

55 =0 55

1 d=(x,s d
()= L EED ()

55 b 955

The transform of the force causes displacement for the shift
piezoengine has the form
d,sSEy ()
F (S) =75

SSS

Its shif reverse coefficient
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E
Oss

<

The structural model of the shift piezoengine has the form

~F(s)+(#)
](s):(M]sz)i1 X[dlsE [;//sh by] 1
x[ch by)E,(s)-E (s)]

[1]

“F, (s)+(15"; )
=, (5)=(15") {d <5, (5)~[7/sh (7)) ]
x[ch (b7)E,(s)-E (5)}

Zss = Sss/S

For the transverse piezoengine the solution of its differential
equation is obtained

E(x,s)= { sh[(h x) ]4—_2

sh(x;/)}/sh(hy)

here El(s), E‘z(s) , are the transforms its end displacements.

The system boundary conditions for the transverse piezoen-
gine has the form

idE(x,s)

E E
s, dx 0 Su

7 (0.5)=

ld_.(xs)
R(ns)= L EED g ()

S

The transform of the force causes displacement for the trans-
verse piezoengine has the form

F(s)=

d, S, E, (s)

E
S
The transverse reverse coefficient has the form

_F(s) _

U(s)

d3]S()
5sﬁ

The structural model of the transverse piezoengine has the
form

—E<s>+(z.ﬁ)"
. d, E [;//sh(hy]

x[ch h;/ g, (s)—_.2 (s)]

E (s)=(Ms*)
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e The general structural scheme a piezoengine a piezoengine a
-F, (s)+(;(”) piezoengine on Figure 1 and its model for biomedical science and
E,(s)= (M2s2 )71 dy E, (s)~[ /sh(hr)] research has the form
X
[eh ()2, ()= (5)] :
2 1 —Fi (S)+(Z;y) 1
_ -1
7= lel/S0 E, (s):(Mlsz) x[yﬂﬂ.‘{’m (s)—[y/sh(ly)J }
><|:ch(l}/)E1 (s)—E2 (9)]

In general the equation of inverse piezoeffect [3-41] has the

form

-1
Si = Vmi\Pm +S;ITVJ _F; (S)+(Z:)
) -1
N | ool Z(s)=(Mos") 1 [v, %, (s)-[7/sh ()]
ere ¥, =E,, D, iscontrol parameter at the voltage or cur- X - —
" P & «[eh(17), ()2, (5)]

rent control.

The system boundary conditions for a piezoengine is deter- v g
mined Ly =5y /SO
1 dE(x,s V.
7 (0.5) = B Yy () Here
KN dx S,
i x=0 J
v _{d33’d31’d15 ¥ _{EbE}yEl
— mi T -
1 d.:(x,s) V. 8338315815 D;, Dy, D,
T (1) = L, (5) ,
Sij X x=/ Sij P P £
v _ ) S83358115 555
. . = E ,D ¥ E D
The transformation of force causes displacement has the form ij §D gD P Y= {7 YV , ¢ = { c,cC
3359112955

F(S) _ VmiSO\Pm (S)
=
$ (Figure 1)

i

TIe) L6 =0
16)

Figure 1: General scheme piezoengine for biomedical science and research.

The displacement matrix is founded here its functions

= (s) s)=Z,(s s)=v,, Y5t +
@ﬂ%%f%§ W1 (5)=E1(5)/, () =viy [Mazfs* i (17/2) ] /4,
ale A =M () st |, 0) 7 [ (1) | +
(W(S)):(Z//:Ej; VVZE?; VVEZ((SS)J +[(Ml+M2);(,;.Fot/th(ly)+1/(c\")2}s2+20¢s/c\*’+0¢2
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Wy (s)=2,(s)/¥, (s)=v,. [MI;(;'SZ +7/th(l)//2)] /A _

i

Wo(s) =2, (s)/F (s) ==z [Mars™ +7/th(iy) /4

i

W (s) =, (s)/Fy(s) == [Myz)'s" +7/th(1y)] /4,

Then static longitudinal displacements at the voltage control
for biomedical science and research have the form

51 =d33UM2/(M1+M2)

‘fz =d33UM1/(M1 +M2)

At the PZT engine d,;, =04 nm/V, U =150V, M, =1kg, M,

Copyright© Afonin SM

= 4 kg its displacements are determined & =48 nm, &, =12 nm,
&, +&,=60nmat 10% error.

The equation of the direct piezoeffect of piezoengine for the
voltage control has the form [8-60].

_ E
Dm - dml]: + gmkEk
here kis the index, gjk is the permittivity.

Its direct coefficient
d, .S,

mi

ke, =m0
st

ij

The transform of the voltage for the feedback on Figure 2 at the
voltage control of piezoengine has the form for two its ends

d,.S,R

Uy (s) :Lén (s)= deén (s),n=12

(Figure 2)

H

chify)

shifyy

1) £.6) el

&,

1
shifsp

eh(h)

L

Figure 2: Scheme engine with feedbacks at voltage control for biomedical science and research.

The mechanical characteristic of piezoengine has the form

_ v
Si (]-;] W=const - V'”illj'” |‘P:const + Si/ T'J
The adjustment characteristic
_ v
Si (le )|T=const - Vmi\Pm + Sij Tj|T:const

The mechanical characteristic of transverse piezoengine has
the form

Ah=Ah,, (1-F/F,,)
Ah,, =dyEh, F = d31E3S0/S1E1

At the PZT engine dy = 0.2 nm/V, E; = 0.5-10° V/m, & =
2.510-2m, §, = 1.5105m?, ;. = 15:102 m?/N the maximum dis-

placement and force are determined Ak, =250 nmand F,, =10
N at 10% error.

The relative displacement a piezoengine at elastic load has the
form

Al s;‘ C,

—=v ¥ - Al
[

mi — m
0

F=C,Al
The adjustment characteristic a piezoengine has the form
v,I¥,

al= 1+'a /ct

The scheme the piezoengine at the voltage control on Figure 3
is determined for first fixed end and elastic inertial load (Figure 3).
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Figure 3: Scheme engine with feedbacks at voltage control for biomedical science and research.

Its function at the voltage control for fixed first end and elastic
inertial load Figure 3 has the form

W(s)=E,(s)/U(s)=k [(a,p’ +a,p" ~a,p+a,)
a,=RC,M,, a,=M,+RC,k,
a, =k, + RC,C ;+RC,C +Rk k,, a,=C +C,
For R =0 its function has the form

E(s) ki

w = =
(s) U(s)  T25 +2TEs+1

k3Ul =d,, (h/5)/(1+C6/C1E1)

n = f(C.r ). o =T,

At the PZT engine M, = 1kg, C. = 0.1.10’ N/m, ¢} = 1.5.107
N/m its time constant is obtained 7, = 0.25.10% s at 10% error. At
d, =0.2nm/V, h/8 =20, C,/C{; =0.05 the coefficient is determined
k}U1 =3.8nm/V at 10% error.

Discussion

A piezoengine is used for biomedical science and research in
system adaptive optics and scanning microscopy, microsurgery.
At using method mathematical physics the structural scheme, a
piezoengine is constructed. Its displacement matrix is founded. The
schemes with the feedbacks at the voltage control are determined.

Conclusions

The general structural scheme a piezoengine is obtained. The
displacement matrix is founded. The parameters of PZT engine at
the voltage control are determined for biomedical science and re-
search in system adaptive optics and scanning microscopy, micro-
surgery.
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