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Abstract 

Inelastic column buckling as opposed to elastic column buckling occurs when the compressive stress locally exceeds the yield strength over a portion 
of the cross-section typically due to residual stresses, out-of-plane straightness, and accidental moments causing a reduction in member stiffness. 
Fiber based models and finite element models are used to study the variation of stress in the cross-section when subjected to axial compressive 
load and to predict the elastic and inelastic buckling capacity. For the fiber-based models, two types of models were developed. One model is for a 
prismatic member consisting of a built-up section with four angles and batten plates. This model is used to predict the inelastic buckling load using 
fiber analysis compared directly to the equations in the AISC “Specifications for Structural Steel Buildings” (2010) Chapter E. The equations in AISC 
are for prismatic members and therefore this model validates the analytical procedure. The second model is for the tapered built-up cross-section. 
The results are compared to a modified version of the equations presented in AISC (2010) (modified from the equations in AISC, Chapter E) for 
tapered members.

Finally, the finite element models were expanded to analyze inelastic column buckling. The models that were used to determine the elastic buckling 
loads with an eigenvalue analysis were used to establish an initial buckled shape. Then, compressive load was applied to columns that had initial 
residual stresses. The finite element models further validated the fiber models for tapered columns which was necessary due to uncertainties in the 
methodology. 

Keywords: Tapered Member, Inelastic Buckling, Elastic Critical load, Residual Stress, Fiber Analysis, Finite Element Analysis, Modified AISC 
Equations

Introduction
Several theories have been developed for inelastic buckling; the 

tangent-modulus theory, the reduced-modulus theory, and Shan-
ley’s theory (Shanley 1947) [8]. Shanley performed experimental 
investigations and compared the results to a mathematical analy-
sis and found that inelastic buckling did not have a unique critical 
load. Also, Shanley indicates that the two extremes of the inelastic 
buckling are the tangent-modulus theory and the reduced-modulus 
theory.

According to the theory, the tangent-modulus and re-
duced-modulus critical loads are only the upper and lower bound-
aries of an infinite number of possible buckling loads. This theory  

 
indicates that inelastic buckling is determined by the relative rates 
of vertical loading and bending in the buckling process. When a 
column starts to deflect laterally, the stresses and strains through 
its cross-section due to both vertical compression and bending is 
superimposed. If the axial strain is more prudent than the flexural 
strain, it is possible for buckling to occur without strain reversal. 
If the column deflects rapidly such that only strain reversal on its 
convex face keeps the load constant, then the process described as 
the reduced-modulus theory occurs. 

Yura (Yura 1971) [9] derived a stiffness reduction factor for 
prismatic columns when differentiating between elastic and inelas-
tic buckling. The author assumed that the stiffness of the column 
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in the inelastic range can be taken as proportional to a reduced 
stiffness, TE I ,where TE  is the tangent modulus. Yura indicated that 
the ratio of the inelastic critical buckling stress, ,cr inelasticF , to the elas-
tic critical buckling stress, ,cr inelasticF , is equivalent to the ratio of the 
tangent modulus to the elastic modulus. These relationships were 
used to determine a stiffness reduction factor. Due to the elastic and 
inelastic behavior, an adjustment in the design criterion of the pris-
matic column was applied using this study. When the slenderness 
ratio indicates that the column should fail by inelastic column buck-
ling, the relative stiffness ratio, elasticG ,is multiplied by the stiffness 
reduction factor, TE E ,

In a historical review, Bjorhovde (Bjorhovde 1988) [5] men-
tioned that in 1889, Considered and Engesser concluded that Eu-
ler’s formula was valid only for slender columns and inelastic col-
umn buckling should be considered for short columns. Also, the 

author mentioned that Considered and Engesser suggested that 
in order to apply Euler’s formula to short columns, the constant 
tangent modulus E  should be replaced by an effective modulus, 

8  0.t bE Eτ= , that depends upon the magnitude of stress at buckling. 
Bjorhovde indicated that Engesser extended the elastic column 
buckling theory in 1889 assuming that inelastic buckling occurs 
with no increase in load, and the relation between stress and strain 
is defined by tangent modulus TE . Bjorhovde discussed the devel-
opment of practical column design formulae and approaches based 
on test results and statistical analyses. The author compared the 
tangent modulus load and the reduced modulus load graphically 
based on test results data for several columns with out-of-straight-
ness as shown in Figure 1. The tangent modulus load was shown to 
be a 3 lower bound, and the reduced modulus load was an upper 
bound only attainable under ideal circumstances.

Figure 1: Bands of maximum column strength curves (Bjorhovde 1988).

Fiber Based Model and Residual Stresses 
In the fiber analysis model, when some of the cross-section 

yields, an effective moment of inertia is calculated corresponding 
to the moment of inertia of the rest of the cross section in which the 
material still has stiffness. This effective moment of inertia is used 
to predict the buckling capacity. 

When a steel column is subjected to a compressive load, there 
are a number of limits states that may cause failure; inelastic col-
umn buckling, elastic buckling, and local buckling of plate elements. 
The governing failure mechanism as well as the critical buckling 
load depends on the unbraced length, boundary conditions, slen-
derness of individual plate elements, strength, and stiffness.

The cross-section that was idealized to develop a fiber-based 
model is shown in Figure 2 and is a built-up shape consisting of 
four angles assumed connected by batten plates. Each angle leg is 
3 in. and has a thickness of 0.5 in. Figure 3 also shows the initial 
residual stress pattern that was assumed in the cross-section due to 
fabrication. On each leg, the maximum compressive residual stress 

at the tip is assumed to be 12 ksi and the maximum tensile residu-
al stress where the legs meet is 12 ksi. Residual stresses are often 
due to uneven cooling during the fabrication process. It is common 
that compressive residual stresses develop at the tips of flanges and 
tensile residual stresses develop at the k-region (where legs meet). 
It is critical to assume that the summation of forces in the cross-sec-
tion is equal to zero for equilibrium prior to applied load. The yield 
strength of 36 ksi was used to determine the maximum value of 
the compressive and tensile residual stress which is assumed 33% 
of the yield stress. In Section F2 of the commentary of AISC (AISC 
2012), it is noted that the assumed residual stress is taken as 0.3 yF  
(30%) for flexural members and when differentiating between in-
elastic lateral torsional buckling and elastic lateral torsional buck-
ling. Therefore, a similar assumption is used in this analysis. 

For the fiber-based model, the cross-section is discretized into 
a number of fibers. Each fiber has an area and a distance from the 
neutral axis which is used to calculate the moment of inertia of the 
cross-section and later used to calculate an effective moment of in-
ertia of the cross-section. The model which consists of four angles 
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is divided into 1600 fibers. Each angle has 400 fibers and therefore, 
each leg has 200 fibers. Based on the residual stress pattern, each 

fiber is designated with its own initial residual stress assumed con-
stant within the fiber.

Figure 2: Fiber discretization over the cross-section and residual stresses.

Analytical Procedure for Fiber-Based Model of 
Prismatic Member

The fiber analysis method is used to analyze the built-up sec-
tion for compressive capacity considering inelastic and elastic fail-
ure modes. The yield stress of the built-up section is assumed 36 
ksi. The maximum residual stress is assumed 12 ksi, compression 
or tension. Therefore, when a compressive load is applied that cor-
responds to a uniform compressive stress of 24 ksi, the angle’s leg 
tips begin to yield. An elastic-perfectly plastic stress strain curve is 
assumed in each fiber as shown in Figure 3. When the fibers yield, 
they no longer contribute to the flexural stiffness of the cross-sec-
tion as evident from Figure 3. Therefore, a new effective moment of 
inertia needs to be calculated for the cross-section.

One primary assumption in the fiber analysis is that the 
cross-section deforms uniformly after load is applied. There-
fore, the fiber analysis was strain controlled and the strain in the 
cross-section due to applied load was assumed constant. The ini-
tial residual strain was computed for each fiber i  using Equation 
1 where _ irε  is the initial residual strain in each fiber, _ irσ  is the 
initial residual stress interpreted from Figure 3, and E  is the elastic 
modulus equal to 29000 ksi.

_

_
r i

r i

F
σ

ε =             
(1)

Load was applied in the fiber model by adding a uniform axial 
compressive strain in the cross-section. This strain is denoted as 

aε  and it is assumed that compression is positive in the analysis. 
Therefore, the new strain for each fiber i  after load is applied, 

i
ε is 

computed using Equation 2.

_i ir aε ε ε= +
        

(2)

If i
ε is computed greater than or equal to the yield strain, yε , 

then the fiber has yielded, and the stress in the fiber, iσ , is equal 
to the yield stress. The yield strain is computed in Equation 3. If the 
strain is less than the yield strain, then the fiber is behaving elasti-
cally, and the stress is computed using Equation 4.

0.00125y
y F

σ
ε = =

         
(3)

ii Eσ ε=            (4)

The total applied load on the cross section is equal to the sum-
mation of the values that are obtained by multiplying the stress on 
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each fiber by the fiber area (0.0075 in2 from Figure 2). This is illus-
trated using Equation 5 where iA  is the area of each fiber and iP  is 
the load within each fiber. load within each fiber. 

1600 1600

1 1
i

n n

i i
i i

P P Aσ
= =

= =

= =∑ ∑
          

(5)

Figure 3: Stress-Strain relation before and after yielding.

 Assuming the column fails by inelastic column buckling; as 
more load is applied, the effective stiffness decreases, thus decreas-
ing the buckling capacity. The correct buckling load is obtained 
when the applied load which causes part of the cross-section to 
yield is equal to the critical buckling load, crP  which considers the 
reduced stiffness. 

For a prismatic member, the elastic buckling capacity is ob-
tained using Equation 6. In the fiber-based model, the moment of 
inertia, I , is obtained from the summation of the moment of inertia 
contribution for each fiber which considers the distance from the 
neutral axis of the cross section. When a portion of the cross-sec-
tion yields due to residual stresses prior to buckling, an effective 
moment of inertia, eI  is calculated by assuming the moment of in-
ertia contribution of the yielded fibers is zero. The critical buckling 
load is computed using Equation 7 which can also be used if the 
entire cross-section remains elastic.

2

2( )e
EIP
KL
π

=

        
(6)

2

2( )
eEIP

KL
π

=
        

(7)

Values of the critical buckling load, crP  are plotted for different 
slenderness ratios, /KL r , and compared to the critical buckling 
loads obtained using AISC equations (AISC 2010). 

Prismatic Member Results and Comparisons to 
AISC

Equation 7 was used to plot the critical loads for different effec-
tive lengths. The results are presented in Figure 3 (Fiber Analysis 
Results) which is discussed further in the proceeding paragraphs.

Figure 4: Comparison between Fiber Analysis and AISC Results for prismatic member.
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In Figure 4, the critical load is plotted vs. the slenderness ratio 
defined as /KL r , where r  is the radius of gyration correspond-
ing to the entire cross-section and is calculated using Equation 8. 
Therefore, after the critical buckling loads were determined for dif-
ferent effective lengths, the effective lengths were divided by the 
radius of gyration for graphing purposes and to compare to AISC 
equations.

/r I A=           (8)

AISC (2012) provides two equations for calculating the critical 
buckling stress, crF , for doubly symmetric prismatic members with 
non-compact plate elements only. These equations are within Sec-
tion E3 of the specification. The equation that is used is dependent 
on the slenderness ratio and whether it is assumed the column 
buckles elastically or inelastically. Equation 9 is used for inelastic 
buckling and Equation 10 is used for elastic buckling. 

When 4.71 , 0.658
y

e

F
F

cr y
y

KL E F F
r F

≤ =
       

 (9)

When 4.71 , 0.877 cr e
y

KL E F F
r F

> =           (10)

The slenderness ratio limit, /KL r , which determines wheth-
er this cross-section fails by elastic or inelastic buckling for a yield 
stress of 36 ksi is calculated as follows:

290004.71 4.71 133.68
36y

KL E
r F

= = =

The elastic buckling stress, eF , from Equations 9 and Equation 
10 is computed using Equation 11 and the critical buckling load is 
computed using Equation 12.

2

e
EF

KL
r

π
=
 
 
 

          (11)

cr cr gP F A=           (12)

In Equation 10, the 0.877 factor accounts for imperfections in 
the geometry which were not considered in the fiber analysis mod-
el. However, the influence of imperfections, out-of-plane straight-
ness and eccentricities does not show up directly in Equation 9. It is 
assumed that considerations for imperfections in a tapered column 
should be the same as that in a prismatic column. Therefore, for 
comparison purposes, the fiber analysis results are multiplied by 
0.877 and compared in Figure 4 as well (Fiber Analysis x 0.877). 
However, the results do not compare well when the slenderness 
ratio is low. 

AISC Inelastic Column Buckling Discussion
In AISC (2012), a best fit curve was used to develop a rela-

tionship between a slenderness parameter and the ratio of critical 
stress to yield stress. This best fit curve is graphed based on exper-
imental data as shown in Figure 5 (Hall 1981) [7]. The limit that 
separates elastic and inelastic buckling is represented by the slen-
derness ratio, 4.71 / yE F , and by a slenderness parameter cλ  equal 
to 1.5. The slenderness parameter is calculated using Equation 13 
and the value of 1.5 is calculated using Equation 14. 

y
c

FL
r E

λ
π

 =  
 

         (13)

4.714.71 1.1 5  y
c

y

FE
F E

λ
π π

 
= = =  
 

       (14)

Figure 5 : Relation between   cλ  and /cr yF F  using experimental data (Hall 1981).
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Although the limit of 4.71 / yE F was fitted using experimental 
data, a similar value can be derived assuming the residual stress 
pattern in Figure 2. The residual stresses are 33% of the yield 
stress. Therefore, when the applied stress is more than 67% of the 
yield stress or when the applied load corresponds to more than 
67% of yF A , the column will fail by inelastic buckling in lieu of elas-
tic buckling. Using Equation 6, the limit is derived as follows:

( )

2

20.67 y
EIF A
KL
π

=

Taking the square root of both sides: 

 0.8167 y
E IF A
KL

π
=

Moving terms: 

0.8167 yF
KL

I
A

Eπ
=

Finally, by using Equation 8, Equation 15 is obtained: 

3.85
y

KL E
r F

=
        (15)

The value of 3.85 is lower than the value of 4.71. Other issues 
involving inelastic buckling that influence this value include out-of-
plane straightness and eccentricities which introduce secondary 
moments. The value of 4.71 corresponds to a stress of 0.44 yF in lieu 
of 0.67 yF . However, this procedure and relationship discrepancies 
between the values can be used to formulate a recommended de-
sign curve that corresponds to inelastic buckling of tapered col-
umns. 

Fiber Analysis of Tapered Member
The fiber analysis for a prismatic member is repeated for the 

tapered built-up member with a tapering ratio, u = 2, and a shape 
factor, m = 2, that is shown in Figure 6.

Figure 6: Non-prismatic beam-column element (Al-Sarraf 1979).

Where:

ao = the distance from the origin O to the smaller member depth

bo = the distance from the origin O to the larger member depth

d1 = the depth at larger member depth between the centroid of 
angles

d2 = the depth at smaller member depth between the centroid 
of angles

u = tapering ratio bo/ao or d1/d2 (Figure 6)

( )

1

2

log

log

I
I

m
u

 
 
 =

A1 = the cross-section area at larger member depth (4Aangle) 

A2 = the cross-section area at smaller member depth (4Aangle)

Aangle = cross sectional area of one angle 

I1 = the moment of inertia at larger member depth [4(Iangle + Aan-

gle d1 2 /4)]

I2 = the moment of inertia at smaller member depth [4(Iangle + 
Aangle d2 2 /4)]

Iangle = moment of inertia of one angle

O = the vanishing point of the tapered member

The flexural buckling limit state for a tapered member is not 
available in AISC (2012) or any other references. Therefore, a new 
set of equations for elastic and inelastic buckling is derived using 
the fiber analysis and other information developed in (Bukaita 
2013) [6]. Equation 16a represents the elastic buckling load while 
Equation 16b represents the elastic buckling stress for a tapered 
column with a tapering ratio, u=2, and a shape factor, m=2.
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( )

2
2

22.108e
EIP
KL

π
=           (16a)

2

2

2

2.108e
EF
KL
r

π
=

 
 
 

       

 (16b)

Assuming the residual stress pattern in Figure 2, the following 
applied load is that required to initiate yielding of the cross-section.

0.67y yP F A=
The actual limit that differentiates between elastic and inelastic 

buckling for a prismatic member assumes that the applied stress is 
0.44 yF . Therefore, the recommendations for tapered columns will 
be the same. The assumed load that would initiate yielding is mod-
ified using Equation 17.

0.44y yP F A=         (17)

By equating Equation 16 with Equation 17: 

( )

2
2

20.44 2.108y
EIF A
KL

π
=

Dividing both sides by 0.44 and moving terms: 

( )2 2

2

2.108
/ 0.44 y

KL E
I A F

π
=

Taking the square root of both sides: 

2

2

2.108
0.44/ y

KL E
FI A
π

=

The value of r2 represents the radius of gyration at the smaller 
member depth and is calculated using Equation 18. 

2
2

Ir
A

=           (18)

Finally, Equation 19 is obtained. 

2

6.88
y

KL E
r F

=          (19)

The expression to the right is assumed to be the slenderness 
limit that separates between elastic and inelastic buckling of the 
tapered member. Assuming that the yield stress of the member is 
36 ksi, the limit is:

2

290006.88 195.3
36

KL
r

= =

Equations 20 and 21 represent the modified AISC equations for 
the tapered member in question. In general, the modified equations 
are very similar to Equations E3-2 and E3-3 in AISC (2010). The pri-

mary differences are; [1] the limit that determines which equations 
to use, [2] the calculation of eF , and [3] using the radius of gyration 
at the smaller member end only, 2r .

When 
2

6.88 , 0.658
y

e

F
F

cr y
y

KL E F F
r F

 
 ≤ =
  

      (20)

When 
2

6.88 , 0.877cr e
y

KL E F F
r F

> =         (21)

The slenderness parameter is defined using Equation 22. 

y
c

e

F
F

λ =  (22)

By substituting Equation 16b into Equation 22, Equation 23 is 
obtained. 

2

2

2

2.108

y
c

F

E

KL
r

λ

π

=
 
 
 
       

              

(23)

By substituting Equation 19 into Equation 23, Equation 24 is 
obtained. 

2

2
2.108

6.88

y
c

y

F
E

E
F

λ
π

=

 
  
 

       (24)

Simplifying Equation 24, the slenderness parameter that sep-
arates elastic and inelastic buckling is obtained. Also, the ratio Fy/
Fe is obtained. 

( )

2

2

1 1.5
2.108

6.88

cλ π
= =

( ) ( )2 21.5 2.25y
c

e

F
F

λ= = =

The elastic buckling stress, Fe, from Equations 20 and Equation 
21 is computed using Equation 16b. The critical buckling load is 
computed using Equation 25.

cr cr gP F A=

The results of the fiber analysis are compared to the results of 
the modified AISC equations (Equations 20 to 25) in Figure 6. As 
in Figure 4, the fiber analysis results are multiplied by 0.877 for 
further comparisons to the modified AISC equations. The results 
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indicate that the modified equations underestimate the critical 
buckling load in comparison to the fiber analysis. However, the fi-
ber analysis results multiplied by 0.877 compare well for slender-
ness ratios of 75 and higher. This was also evident from the results 
provided in Figure 4 for a prismatic member. Overall, the compari-
sons in Figure 4 for a prismatic member are very similar to the com-

parisons in Figure 7 for the tapered member. Therefore, the new 
modified equations for tapered members compare favorably to the 
equations currently presented in AISC for a prismatic member and 
the only modifications recommended are [1] the computation of eF  
and [2] the slenderness ratio that differentiates between elastic and 
inelastic column buckling.

Figure 7: Results of Fiber Analysis and modified AISC equations for tapered Member.

ABAQUS Analysis of Tapered Member
The finite element approach is the second analysis method 

used to obtain the elastic and inelastic buckling loads for the ta-
pered member in question. This approach was used to validate the 
methodology of the fiber models due to uncertainties in the load 
carried by the inelastic column at buckling.

The built-up tapered model dimensions and shape described 
above is used for the finite element model. The model consists of 
5252 nodes and 4900 shell elements to represent the 4 angles. An-
other 100 square elements were used to represent the batten. The 
tapered built-up column includes four [4] 3 in. x 3 in. x ½ in. an-

gles that were connected by the batten plates along the length. The 
cross-sectional dimensions are 10 in. x 10 in. centroid-to-centroid 
of the steel angles at the smaller member depth and 20 in. x 20 in. 
at the larger member depth. Therefore, the tapering ratio of all se-
lected models is equal to 2.

Eight different member lengths (300 inches to 4000 inches) for 
fixed-fixed support conditions and another five different member 
lengths (300 inches to 2000 inches) for hinged-hinged support 
conditions were analyzed and compared with fiber analysis results. 
The distance between battens is designed to be constant and equal 
to 0.01L as shown in Figure 8. A short distance between the battens 
eliminates the shear effect.

Figure 8: The built-up tapered batten model under consideration.
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Development of Finite Elements Models
The analysis was performed as a static-stress analysis using the 

*Static Riks option which can be used to study the post-buckling 
behavior. In this type of analysis, the finite element model does not 
buckle naturally if the column is perfectly straight. Instead, it is nec-
essary to insert an imperfection into the model. An imperfection of 
10% of the buckled shapes from the eigenvalue analysis was used.

Since inelastic deformations are expected, it is necessary to 
specify that when the yield strain is exceeded, the stress is equal 
to the yield stress (normal stress example). This was incorporated 
in the ABAQUS model using the *Plastic option. The initial residual 
stress pattern was implemented into the finite element model us-
ing the *Initial Conditions Type = Stress option. Fewer elements 
within the cross-section were usedin the finite element model in 
comparison to the fiber model.

ABAQUS Results

The analysis results from the finite element models are divided 
into two groups depending on boundary conditions. For each mod-
el, two input files are created. One is used to obtain the eigenvalue 
results and the other is used to obtain the buckling load considering 
the initial residual stresses. The eigenvalue results are stored in a 
temporary file for the “Imperfection” inserted into the second file.

Fixed-Fixed Boundary Conditions
The first model is the built-up tapered member with a 300 in. 

length. Figure 9 shows the applied load vs. time history. From this 
figure, it is determined that the maximum load of 425.8 kips is ob-
tained prior to the column buckling inelastically.

The second model is the built-up tapered member with an 800 
in. length. Figure 10 shows the applied load vs. time history. From 
this figure, it is determined that the maximum load of 410.2 kips is 
obtained prior to the column buckling inelastically.

Figure 9: Applied load vs. Arc Length, length=300 in., fixed-fixed.

Figure 10: Applied load vs. Arc Length, length=800 in., fixed-fixed.
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Similar charts were made for lengths of 1200 in., 1600 in., 2000 
in., 2400 in., 3000 in., and 4000 in. The maximum loads were deter-

mined to be 369 kips, 274 kips, 180 kips, 126 kips, 81 kips, and 46 
kips, respectively.

Figure 11: Applied load vs. Arc Length, length=300 in., hinged-hinged.

Hinged-Hinged Boundary Conditions
The first model is the built-up tapered member with a 300 in. 

length. Figure 11 shows the applied load vs. time history. From this 
figure, it is determined that the maximum load of 411 kips is ob-
tained prior to the column buckling inelastically.

The second model is the built-up tapered member with a 600 
in. length. Figure 12 shows the applied load vs. time history. From 
this figure, it is determined that the maximum load of 350 kips is 
obtained prior to the column buckling inelastically.

Figure 12: Applied load vs. Arc Length, length=300 in., hinged-hinged.

Similar charts were made for lengths of 1200 in., 1600 in., and 
2000 in. The maximum loads were determined to be 126 kips, 
75 kips, and 42 kips, respectively. Figure 13 shows the complete 
load-displacement relationships for all lengths and with fixed-fixed 
boundary conditions. Figure 14 shows the complete load-displace-
ment relationships for all lengths and with hinged-hinged bound-
ary conditions. The values for each curve represent the lengths of 
each model.

Analysis Results and Comparisons

Figure 15 compares the finite elements results to the fiber anal-
ysis results for a tapered column with fixed-fixed support condi-
tions. The slenderness ratio is used in lieu of the length. Figure 16 
compares the finite elements results to the fiber analysis results for 
a tapered column with hinged-hinged support conditions. Overall, 
the comparisons are favorable and even better than anticipated 
considering the reduction in elements in the finite element model. 
This study validates the work performed in this study and recom-
mendations that are provided for the design capacity of tapered 
columns as well as the alignment charts.
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Figure 13: Load-Displacement by using ABAQUS for 8 lengths with fixed-fixed support conditions.

Figure 14: Load-Displacement by using ABAQUS for 5 lengths with hingedhinged support conditions.

Figure 15: Comparison between Fiber Analysis Results and ABAQUS Results, for fixed-fixed support condition.
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Figure 16: Comparison between Fiber Analysis Results and ABAQUS Results, for hinged-hinged support condition.

Stiffness Reduction Factor
The alignment charts that are derived for built-up tapered mem-

ber (Bukaita 2013) that are shown in appendix A cannot be used for 
inelastic buckling without considering the reduced stiffness when 
calculating the relative stiffness ratio at larger and smaller mem-
ber depth 1ψ  and 2ψ . These alignment charts as well as the AISC 
alignment charts are derived based on elastic behavior. A stiffness 
reduction factor should be multiplied by the relative stiffness ratio 
to obtain a new relative stiffness ratio for tapered members when 
Equation 9 is used in lieu of Equation 10. It is proposed that the 
same reduction factor used to reduce the stiffness of a prismatic 
column is used to reduce the stiffness of the tapered column. The 
stiffness reduction factor is obtained using Equation 26.

 ,

,

0.8cr inelasticT
b

cr elastic

FE
E F

τ= =          (26)

The relative stiffness ratio for the tapered member under in-
elastic effect can be obtained using Equation 27 modified which 
is the same of the modified relative stiffness ratio for a prismatic 
member when subjected to inelastic buckling.

T
inelastic elastic

E
E

ψ ψ=         (27)

Conclusions
Due to the variation of residual stresses in the cross-section, 

part of the cross-section may yield prior to buckling. Therefore, the 
buckling load capacity is reduced due to a reduction in the effective 
moment of inertia. Some observations and conclusions consider-
ing the influence of residual stresses and other imperfections in 
tapered columns are summarized as follows:

a)	 For a prismatic member and according to AISC (2010), 
the slenderness ratio that separates between inelastic buckling and 
elastic buckling is / 4.71 / yKL r E F= which assumes the maximum 
stress before yielding due to applied load only is 0.44 yF .

b)	 For the tapered member with tapering ratio u = 2, the 
slenderness ratio that separates between inelastic buckling and 
elastic buckling is equal to 2/ 6.88 / yKL r E F= which assumes that 
the maximum stress before yielding is 0.44 yF .

c)	 In general, for other tapering ratio, the slenderness ratio 
that separates between inelastic buckling and elastic buckling as-
suming the same stress before yielding can be obtained with re-
spect to the non-dimensional axial force parameter for the particu-
lar tapered column:

2
2/

0.44 y

EKL r
F

ρπ=

d)	 The slenderness parameter cλ for the tapered member is 
equal to the slenderness parameter for a prismatic member (1.5).

To determine the compressive capacity of tapered columns, the 
following modified equations are recommended for a tapering ratio 
u = 2 and with a built-up cross-section. More modified equations 
are required for other cross-sections and other tapering ratios.

2

2

2

2.108
e

EF
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r

π
=

 
 
 
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2
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y e
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 
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2

6.88 , 0.877 2.25     y
cr e

y e

FKL E F F at
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> = >

2n crP F A=

Finite element models were used to verify the results using an 
eigenvalue approach and several boundary conditions. This proce-
dure can be idealized for other tapered columns and alterations are 
required for each type of tapered column and each tapering ratio.
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In the fiber analysis models and finite element models, the ini-
tial residual stress pattern in the cross-section was similar to resid-
ual stress patterns assumed by AISC (2010).

Compressive residual stresses were assumed at the leg tips 
of the angles and tensile residual stresses were assumed near the 
k-region (i.e. where the angle legs meet). The residual stresses are 
assumed constant throughout the entire length.

The critical buckling stress for a prismatic member is comput-
ed in AISC (2010) using Section E3 and Equations E3-2 and E3-3. 
Equation E3-2 is for when inelastic buckling is expected and Equa-
tion E3-3 is for when elastic buckling is expected. In order to eval-
uate the practicality of the new alignment chart and derivation of 
the buckling load for a tapered column, the derivation had to be 
evaluated when subjected to inelastic stresses. 

APPENDIX A

Figure A-1: Alignment chart for braced frame against side sway at u=2.

Figure A-2: Alignment chart for braced frame against side sway at u=4.
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Figure A-3: Alignment for unbraced frame against side sway at u=2.

Figure A-4: Alignment for unbraced frame against side sway at u=4.
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