ISSN: 2642-1747

Mini Review Copyright© Jia Ping Wu

Alzheimer's Disease Accelerates Developed Postoperative Dementia

Jia Ping Wu*

Department of Medical Technology, Shaoguan University, China

*Corresponding author: Jia Ping Wu, Department of Medical Technology, Shaoguan University, China.

To Cite This Article: Jia Ping Wu*. Alzheimer's Disease Accelerates Developed Postoperative Dementia. Am J Biomed Sci & Res. 2024 23(4) AJBSR.MS.ID.003109, DOI: 10.34297/AJBSR.2024.23.003109

Received:

August 05, 2024; Published:

August 13, 2024

Minireview

Alzheimer's disease is a decline in thinking and memory skills, although it is the most common cause of dementia. Dementia is a disease phenomenon used to describe a decline in cognitive function [1]. Many people think that dementia is a normal aging phenomenon [2]. Dementia is caused by changes in the brain, but in Alzheimer's cases the exact mechanisms that lead to dementia are unknown. Alzheimer's disease is the most common type, accounting for 60% to 80% of all dementia cases [3]. Although dementia is more common with age, it is not considered a normal part of aging. Dementia is a disease rather than aging, and many people think that Alzheimer's diseases are normal aging phenomena, and it is often easy to find delayed treatment. Nearly 70% of people with dementia worldwide have Alzheimer's disease [4]. Cranial neurological disorders arise from the brain's inability to perform the function of poor protein storage, and these Alzheimer's patients often have more severe forms of dementia, memory loss, and hippocampal gyrus atrophy [5]. Dementia is more common in older people [6]. Dementia is a combination of symptoms that can be broadly divided into degenerative and vascular, as well as both. Degenerative dementia is the most common form of dementia in patients with Alzheimer's disease, mainly due to the degeneration or lesion of nerve cells in the brain, resulting in memory loss and cognitive problems in the brain [7-10].

The other is vascular dementia, which is mainly caused by problems with the blood vessels in the brain, resulting in problems in the supply of oxygen to the brain, and the death of brain cells causing mental decline in patients [11]. Alzheimer's disease is an irreversible form of degenerative dementia. Surgery to remove part of the elderly cancer patients, postoperative cognitive dysfunction and dementia [12]. Patients who wake up after surgery have

cognitive decline or memory loss. Surgical anesthetics can render a person unconscious by blocking the transmission of information between different areas of the cerebral cortex. This is due to surgical anesthetics not only causing temporary symptoms of Alzheimer's diseases, but also worsen the condition of patients with Alzheimer's disease [13]. Certain anesthetics cause inflammation of nerve tissue, which leads to the appearance of precursors to Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative dementia disease, including the formation of amyloid plaques and entanglement of nerve fibers into a state of mental decline [14].

The time of disease degeneration is not certain, the nerve cells in the brain are destroyed, the most obvious early symptoms are memory loss, and there are problems in the recognition of time and place. Alzheimer's disease is mainly because of the invasion of the hippocampal gyrus, and abnormal nerve fiber entanglement [15]. Surgical anesthetics tend to detect the phenomenon of dementia rather than normal aging. Dementia is a transition zone between the normal aging of mild cognitive impairment and the onset of signs of dementia [16]. Many people think that dementia patients have normal Alzheimer's disease aging, and it is often easy to find delayed treatment [17]. However, dementia is a combination of symptoms that face various challenges in treatment, but not the most effective way is to prevent the risk of developing dementia after surgical resection removal.

Acknowledgement

None.

Conflict of Interest

None.

Am J Biomed Sci & Res Copyright© Jia Ping Wu

References

- Lekskulchai V (2021) Prevalence of Hepatitis B and C Virus Infections: Influence of National Health Care Policies and Local Clinical Practices. Med Sci Monit Basic Res 27: e933692-1-e933692-9.
- Mao S, Yu X, Shan Y, Fan R, Wu S, et al. (2021) Albumin-Bilirubin (ALBI) and Monocyte to Lymphocyte Ratio (MLR)-Based Nomogram Model to Predict Tumor Recurrence of AFP-Negative Hepatocellular Carcinoma. J Hepatocell Carcinoma 8: 1355-1365.
- 3. Li S, Liu R, Pan Q, Wang G, Cheng D, et al. (2020) De novo lipogenesis is elicited dramatically in human hepatocellular carcinoma especially in hepatitis C virus-induced hepatocellular carcinoma. MedComm 1(2): 178-187.
- Wang Y, Wang M, Zhang G, Ou X, Ma H, et al. (2020) Control of Chronic Hepatitis B in China: Perspective of Diagnosis and Treatment. China CDC Wkly 2(31): 596-600.
- Madhavan A, Palappallil D, Balakrishnapanicker J, Asokan A (2020) Immune response to hepatitis B vaccine: An evaluation. Perspectives in Clinical Research 12(4): 209-215.
- Shetty D, Amarapurkar A, Shukla A (2020) Primary Versus Secondary NAFLD: Perspective on Advanced Fibrosis. J Clin Exp Hepatol 11(5): 557-564.
- Lauszus J, Eriksen P, Hansen M, Eriksen L, Shawcross D, et al. (2021) Activation and Functional Priming of Blood Neutrophils in Non-Alcoholic Fatty Liver Disease Increases in Non-Alcoholic Steatohepatitis. Clin Exp Gastroenterol 14: 441-449.
- 8. Dobbie L, Tahrani A, Alam U, James J, Wilding J, et al. (2021) Exercise in Obesity—the Role of Technology in Health Services: Can This Approach Work. Curr Obes Rep 11: 1-14.
- 9. Yang H, Deng Q, Ni T, liu Y, Lu L, et al. (2021) Targeted Inhibition of LPL/

- FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int J Biol Sci 17(15): 4207-4222.
- 10. Zaki M, Amin D, Mohamed R (2020) Body composition, phenotype and central obesity indices in Egyptian women with non-alcoholic fatty liver disease. J Complement Integr Med 18(2): 385-390.
- 11. Zhu Y, Wan N, Shan X, Deng G, Xu Q, et al. (2020) Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice. Acta Pharm Sin B 11(5): 1200-1212.
- Zhou Y, Li P, Wang X, Wu C, Fan N, et al. (2020) In situ visualization of peroxisomal viscosity in the liver of mice with non-alcoholic fatty liver disease by near-infrared fluorescence and photoacoustic imaging. Chem Sci 11: 12149-12156.
- 13. Rutledge SM, Asgharpour A (2020) Smoking and Liver Disease. Gastroenterol Hepatol (N Y) 16(12): 617-625.
- Aneni EC, Bittencourt MS, Teng C, Cainzos-Achirica M, Osondu CU, et al. (2020) The risk of cardiometabolic disorders in lean non-alcoholic fatty liver disease: A longitudinal study. Am J Prev Cardiol 4: 100097.
- 15. Jain S, Thanage R, Panchal F, Rathi PM, Munshi R, et al. (2020) Screening of Family Members of Nonalcoholic Fatty Liver Disease Patients Can Detect Undiagnosed Nonalcoholic Fatty Liver Disease Among Them: Is There a Genetic Link. J Clin Exp Hepatol 11(4): 466-474.
- 16. Kim DG, Krenz A, Toussaint LE, Maurer KJ, Robinson SA, et al. (2016) Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation 13: 1.
- 17. ZIMMERMAN AJ (1948) Curare in anesthesis and in surgery. J Am Inst Homeopath 41: 147-149.