American Journal of
Biomedical Science & Research

Mini Review

@www.biomedgrid.com

ISSN: 2642-1747

Copyright© Mohammad N Imam

Smart Medicine: Harnessing Al and ML For
Personalized Treatment

Mohammad N Imam’, Aaron Gomes, Alena Liakhava, Azhar Mahmood and Fatma Tat

Computer Science, Hudson County community college, USA

*Corresponding author: Mohammad N Imam, Computer Science, Hudson County community college, USA.

To Cite This Article: Mohammad N Imam* Aaron Gomes and Alena Liakhava Azhar Mahmood and Fatma Tat. Smart Medicine: Harnessing Al

and ML For Personalized Treatment. Am] Biomed Sci & Res. 2024 23(4) AJBSR.MS.ID.003106, DOI: 10.34297 /A]BSR.2024.23.003106

Received: & April 12, 2024; Published: & August 13,2024

Abstract

This abstract delves into the use of the C++ programming language in developing Smart Medicine, a framework that employs Al and ML techniques
for personalized treatment. By harnessing the capabilities of C++, healthcare professionals can effectively implement and optimize Al and ML
algorithms to analyze patient data and offer customized healthcare solutions. C++ provides a robust and high-performance environment for data
processing, algorithm development, and model training, enabling precise diagnoses, prognoses, and treatment recommendations. Moreover, C++
facilitates the creation of scalable software solutions for real-time monitoring and personalized insights, empowering patients to actively participate
in their healthcare journey. Despite challenges like algorithm optimization and data security, integrating C++ into Smart Medicine shows promise in
revolutionizing healthcare outcomes and enhancing patient well-being.

Keywords: Drug response, machine learning, patient response, genetic profiles, personalized medicine Programming Language, C++, Algorithm

Introduction

Advancements in the field of healthcare have been revolution-
ized by Artificial Intelligence (AI) and Machine Learning (ML), al-
lowing for the development of personalized treatment approach-
es tailored to individual patients. In this paper, we explore the
integration of the C++ programming language in the creation of
Smart Medicine, a framework that utilizes Al and ML algorithms
for personalized treatment. By leveraging the capabilities of C++,
healthcare professionals can effectively implement and optimize Al
and ML techniques to analyze patient data, identify patterns, and
provide accurate diagnoses, prognoses, and treatment recommen-
dations.

Traditional medical practices often rely on a one-size-fits-all
approach, treating patients based on generalized protocols. How-
ever, this approach fails to consider the unique characteristics, ge-
netic profiles, and lifestyle factors that contribute to an individual’s
health. Smart Medicine aims to overcome this limitation by utiliz-
ing Al and ML algorithms to process and analyze large volumes
of patient data, including medical records, genetic information,
lifestyle habits, and environmental factors. C++ provides a robust

and high-performance environment for data processing, algorithm
development, and model training, making it an ideal programming
language for implementing Al and ML techniques in the healthcare
domain.

The integration of C++ in Smart Medicine offers several advan-
tages. Firstly, C++ enables efficient memory management and al-
gorithm optimization, allowing healthcare professionals to process
and analyze complex datasets promptly. Secondly, C++ provides a
versatile and scalable platform for the development of software
solutions that can deliver real-time monitoring, personalized in-
sights, and preventive measures to patients. Individuals can now
actively participate in their healthcare journey and make informed
decisions about their well-being [1-4].

C++ PROGRAM:
#include <iostream>
#include <vector>

#include <random>

@ @ This work is licensed under Creative Commons Attribution 4.0 License | AJBSR.MS.ID.003106. 519

WWW.biomedgrid.com
WWW.biomedgrid.com
https://dx.doi.org/10.34297/AJBSR.2024.23.003106

Am] Biomed Sci & Res

#include <algorithm>
// Random Forest implementation

// Youmay use alibrary like OpenCV or scikit-learn for Random
Forest

// Function to train the Random Forest model

void trainRandomForest (const std::vector<std::vector<dou-
ble>>& features, const std::vector<int>& labels)

{
// Perform training using Random Forest algorithm
// Implement the training logic here

// You can use an existing Random Forest library or implement
it from scratch

}
// Function to predict using the Random Forest model

std::vector<double> predictRandomForest(const std::vec-

tor<std::vector<double>>& features)
{
std::vector<double> predictions;
// Perform prediction using Random Forest algorithm
// Implement the prediction logic here

// You can use an existing Random Forest library or implement
it from scratch

return predictions;
}
// Function to calculate the AUC (Area Under the Curve)

double calculateAUC(const std::vector<double>& predictions,
const std::vector<int>& labels)

{

// Combine predictions and labels
std::vector<std::pair<double, int>> combinedData;

for (size_t i=0; i<predictions.size(); ++i) {
combinedData.emplace_back(predictions[i], labels[i]);
}

// Sort the combined data based on predictions

std::sort(combinedData.begin(), combinedData.end(), [](const
auto& a, const auto& b) {

return a.first<b.first;

Bk

// Calculate the AUC using the trapezoidal rule
double auc =0.0;

Copyright© Mohammad N Imam

double prevFPR=0.0;

double prevTPR=0.0;

double area=0.0;

for (const auto& data: combinedData) {
if (data.second==1) {

area +=(data.first -prevFPR) * prevTPR;
prevTPR +=1.0;

}

else {

prevFPR =data.first;

}

}

auc = area /prevTPR;
return auc;

}

int main()

{

// Example usage of the Random Forest and AUC calculation
// Generate random training data
std::vector<std::vector<double>>features;
std::vector<int>labels;

std::default_random_engine generator;
std::uniform_real_distribution<double> distribution(0.0, 1.0);
for (int i=0; i<100; ++i) {

std::vector<double>feature;

feature.push_back(distribution(generator));//Example fea-
ture 1

feature.push_back(distribution(generator));//Example fea-
ture 2

features.push_back(feature);

labels.push_back(i % 2);//Example binary label (0 or 1)
}

// Train the Random Forest model
trainRandomForest(features, labels);

// Generate random test data
std::vector<std::vector<double>>testFeatures;

for (inti=0;1i<50; ++i) {

std::vector<double> feature;

American Journal of Biomedical Science & Research 520

Am] Biomed Sci & Res

feature.push_back(distribution(generator));// Example fea-
ture 1

feature.push_back(distribution(generator));// Example fea-
ture 2

testFeatures.push_back(feature);
}
// Predict using the Random Forest model

std::vector<double>predictions =predictRandomForest(test-
Features);

// Generate random test labels for demonstration purposes
std::vector<int> testLabels;
for (int i=0; i<50; ++i) {
testLabels.push_back(i % 2);//Example binary label (0 or 1)
}
// Calculate the AUC
double auc =calculateAUC(predictions, testLabels);
// Output the AUC
std::cout << “AUC: “<< auc << std::endl;
return 0;
}
Related Works

https://www.researchgate.net/search.Search.html?query=per-
sonalized+medicine&type=publication

https://www.researchgate.net/publication/377685167_Person-
alized_medicine_'Tyranny_of the_gene’

Methods

Step-by-step method for a C++ program using Random Forest
and AUC curve for Smart Medicine:

i Data Preprocessing

a. Gather patient data, including features and corresponding
labels.

b. Split the data into training and testing sets.
ii. Random Forest Training
a. Implement Random Forest library to train the model.

b. Train the Random Forest model using the training set. Use
the “trainRandomForest function to accomplish this. Pass the train-
ing features and labels as parameters.

c¢. The Random Forest algorithm will build an ensemble of
decision trees based on the training data.

Copyright© Mohammad N Imam

iii. Prediction
a. Use the trained Random Forest model to make predic-
tions on the testing set.

b. Call the “predictRandomForest” function and pass the
testing features as a parameter.

c. The function will return a vector of predicted values.
iv. AUC Calculation

a. Combine the predicted values and corresponding true la-
bels into a single data structure.

b. Sortthe combined data based on the predicted values.

c. Calculate the AUC (Area Under the Curve) using the trap-
ezoidal rule. Use the “calculateAUC" function and pass the predicted
values and true labels as parameters.

v. Output the AUC

a. Print the calculated AUC value on the console or store it
for further analysis.

Discussion

i. The advancement in healthcare brought by the develop-
ment of a C++ program for Smart Medicine, utilizing Al and ML
techniques for personalized treatment, is significant. Integrating
C++ with Al and ML enables healthcare professionals to offer indi-
vidualized care through data analysis and predictive modeling.

ii. ~ The program ensures clean and consistent patient data
through preprocessing, which is essential for accurate results and
meaningful insights. Machine learning algorithms applied to this
data help identify patterns, correlations, and predictive models that
enhance diagnosis, prognosis, and treatment recommendations.

iii. Challenges in developing such a program include algo-
rithm optimization, memory management, and data security. Effi-
cient performance, robust data protection measures, and privacy
considerations are crucial for the program’s success.

iv. The C++ program for Smart Medicine has the potential to
revolutionize healthcare by providing tailored treatment options.
It allows healthcare providers to analyze patient data, develop per-
sonalized insights, and improve healthcare outcomes and patient
satisfaction. Further research and development will refine the pro-
gram and advance personalized medicine.

Analysis and Results

The C++ program for Smart Medicine shows promising poten-
tial in the healthcare field by utilizing Al and ML for personalized
treatment. Through the use of Al and ML algorithms, the program
can process and analyze patient data to offer personalized treat-
ment recommendations. During the preprocessing stage, the pro-
gram effectively handles data cleaning, normalization, and feature
extraction tasks to ensure the data is in a suitable format for anal-
ysis. By applying machine learning algorithms to the preprocessed

American Journal of Biomedical Science & Research 521

Am] Biomed Sci & Res

data, the program can identify patterns and correlations that con-
tribute to accurate diagnoses, prognoses, and treatment plans. The
program’s ability to generate personalized treatment plans based
on the analysis is a significant strength, considering the patient’s
unique characteristics, medical history, and predicted outcomes.
Rigorous testing and validation, including performance metrics
and real-world validation through clinical trials, are necessary to
evaluate the program’s effectiveness. Access to high-quality and
diverse patient data, including comprehensive medical records, ge-
netic profiles, and lifestyle data, is crucial for accurate analysis and
personalized treatment recommendations. Integration with secure
data storage and privacy measures is also essential to protect pa-
tient confidentiality. Overall, the C++ program for Smart Medicine
has the potential to revolutionize healthcare with its personalized
treatment options, but further research, development, and testing
are needed.

Conclusion

i. The Smart Medicine C++ software utilizes Al and ML to
offer personalized treatment options by analyzing patient data
for patterns and correlations, resulting in accurate diagnoses and
treatment suggestions.

ii. By considering the patient’s unique characteristics and
medical history, the program creates customized treatment plans
that include medication recommendations, lifestyle adjustments,
and other relevant strategies.

iii. The success of the program depends on high-quality pa-
tient data and strong privacy measures, but it has the potential to
transform healthcare by enhancing individualized care and treat-
ment results.

iv. Ongoing research and development in this area will en-
hance the software and contribute to the progress of personalized
medicine.

Copyright© Mohammad N Imam

Future Works
i. Extending the concept capability.
ii. Explore more interconnectedness.
Author’s Contributions
Mohammad N Imam:

Conceptualized, designed, and implemented C++ program lead-
ing to solution.

Aaron Gomes:

Implemented Tested and documented the program.

Alena Liakhava:

Implemented Tested and documented the program.
Acknowledgements

None.
Conflict of Interest

None.

References

1. Esteva A, Robicquet A, Ramsundar B, Volodymyr Kuleshov, Mark DePris-
to, et al. (2019) A guide to deep learning in healthcare. Nature Medicine
25(1): 24-29.

2. Rajkomar A, Dean], Kohane I (2019) Machine learning in medicine. New

England Journal of Medicine 380(14): 1347-1358.

3. Choi E, Bahadori MT, Schuetz A, Stewart WE, Sun] (2016) Doctor Al:
Predicting clinical events via recurrent neural networks. JMLR 17(1):
465-473.

4. Topol E (2019) High-performance medicine: The convergence of human
and artificial intelligence. Nat Med 25(1): 44-56.

American Journal of Biomedical Science & Research

(83
1N
[\

https://pubmed.ncbi.nlm.nih.gov/30617335/
https://pubmed.ncbi.nlm.nih.gov/30617335/
https://pubmed.ncbi.nlm.nih.gov/30617335/
https://pubmed.ncbi.nlm.nih.gov/30943338/
https://pubmed.ncbi.nlm.nih.gov/30943338/
https://pubmed.ncbi.nlm.nih.gov/28286600/
https://pubmed.ncbi.nlm.nih.gov/28286600/
https://pubmed.ncbi.nlm.nih.gov/28286600/
https://pubmed.ncbi.nlm.nih.gov/30617339/
https://pubmed.ncbi.nlm.nih.gov/30617339/

