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Abstract

The integration of Artificial Intelligence (Al) in Ultrasound (US) imaging is revolutionizing diagnostic practices in Obstetrics and Gynecology (OB/
GYN). This mini review examines the contemporary applications of Al in US imaging, emphasizing both its advantages and challenges. Analyzing
189 articles from 1994 to 2023, the review explores Al-driven advancements in areas such as fetal biometry, echocardiography, neurosonography,
placental analysis, and the identification of fetal abnormalities. Al technologies have shown promise in automating measurements, enhancing image
quality, and minimizing operator dependency, thus improving diagnostic accuracy and operational efficiency. Nevertheless, issues such as algorithm
performance in low-quality images and the requirement for training with pathological data persist. The review highlights the necessity for continued
research to optimize Al applications and facilitate their clinical adoption in OB/GYN.
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Introduction

Artificial Intelligence (AI) has made significant inroads into var-
ious fields of medicine, and its impact on Ultrasound (US) imaging
in Obstetrics and Gynecology (OB/GYN) is particularly noteworthy.
The application of Al in medical imaging aims to address the inher-
ent challenges of traditional US, such as operator dependency, vari-
ability in image interpretation, and the need for extensive training
[1]. Al technologies, including machine learning and deep learning,
have the potential to enhance diagnostic accuracy, streamline work-
flows, and improve patient outcomes by automating processes and
providing decision support [2]. In the field of OB/GYN, US imaging
is indispensable due to its non-invasive nature, real-time imaging
capabilities, and cost-effectiveness. However, the quality and reli-
ability of US imaging are often influenced by the operator’s exper-
tise and the equipment used. Al integration seeks to mitigate these
issues by offering automated solutions for image acquisition, analy-
sis, and interpretation [3]. For instance, Al algorithms can assist in

the detection and measurement of fetal biometry, the identification
of congenital heart defects through fetal echocardiography, and the
assessment of placental health and neurodevelopmental abnormal-
ities [4]. Recent literature underscores the transformative potential
of Al in US imaging. Studies have demonstrated that Al-assisted
US can reduce examination time, decrease inter- and intra-opera-
tor variability, and enhance the accuracy of diagnostic procedures
[5]. Despite these advancements, there are still challenges to be
addressed, such as the algorithm’s performance in suboptimal im-
aging conditions and the need for extensive training datasets that
include pathological cases [6]. This mini review aims to provide a
comprehensive overview of the current applications of Al in US im-
aging within OB/GYN, drawing from a systematic analysis of 189
articles published between 1994 and 2023. By highlighting both
the benefits and limitations of Al technologies, this review seeks to
inform future research directions and promote the effective clinical
adoption of Al-assisted US in OB/GYN practices.

@ @ This work is licensed under Creative Commons Attribution 4.0 License|A]BSR.MS.ID.OO3066.

383
[N%)
~


WWW.biomedgrid.com
WWW.biomedgrid.com
https://dx.doi.org/10.34297/AJBSR.2024.23.003066

Am ] Biomed Sci & Res

Materials and Methods

This systematic literature review was conducted following the
Preferred Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) guidelines [7]. The aim was to provide a compre-
hensive overview of the applications of Artificial Intelligence (AI)
in Ultrasound (US) imaging within the field of Obstetrics and Gyne-
cology (OB/GYN). The review included studies published between
1994 and 2023.

Search Strategy

A systematic search was performed in the PubMed and Co-
chrane Library databases on May 14, 2023. The search terms used
were a combination of keywords related to Al and US in OB/GYN,

» o«

specifically: “artificial intelligence,” “deep learning” “machine

learning,” “
“gynecology,” and “pregnancy.” Filters for text availability (ab-

stracts) were applied to ensure relevant studies were retrieved.

» o«

artificial neural networks,” “ultrasound,” “obstetrics,”

Inclusion and Exclusion Criteria

Studies were selected based on the following inclusion crite-
ria:

I.  Use of Al technologies in US imaging.
II.  Focus on obstetrics or gynecology.
[II.  Published in English or German.
IV.  Availability of full-text articles.
Exclusion criteria included:
a.  Studies not involving Al or US.
b.  Research focused on specialties other than OB/GYN.

c.  Articles that did not provide sufficient data for analysis,
such as protocols or reviews.

Screening and Data Extraction

The initial search yielded 737 records. After removing du-
plicates, 621 records were screened based on their titles and ab-
stracts. Two independent reviewers assessed the eligibility of
the articles. Discrepancies were resolved through discussion and
consensus. Full-text copies of potentially relevant articles were
obtained for further evaluation. Using the PICOS (Participants, In-
tervention, Comparison, Outcomes, Study design) framework, data
were extracted and categorized. Participants included healthcare
professionals in OB/GYN or radiology, Al specialists, and patients
(pregnant or non-pregnant women). Interventions were defined as
Al-assisted US applications. Comparisons were made between Al
algorithms and human examiners or other Al algorithms. Outcomes
focused on fields of Al applications, benefits and limitations of Al
usage, and future research aspects.

Data Analysis

The included studies were categorized into two main sections:
obstetrics and gynecology. Within each section, studies were fur-
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ther subdivided based on specific applications such as fetal biom-
etry, echocardiography, neurosonography, placental assessment,
and detection of fetal malformations. Quantitative and qualitative
analyses were performed to summarize the findings. Figures and
tables were used to illustrate the distribution of research topics and
the performance of Al applications.

Ethical Considerations

As this study was a systematic review of existing literature, no
ethical approval was required. However, all included studies were
evaluated to ensure they adhered to ethical standards in their re-
spective methodologies.

Results
Applications in Obstetrics

Fetal Biometry: Among the 148 obstetric studies, 27 focused
on Al applications in fetal biometry. These studies demonstrat-
ed the use of Al algorithms in detecting and measuring standard
planes in 2D and 3D US images. Automated measurements of Head
Circumference (HC), Abdominal Circumference (AC), and femur
length showed promise in reducing operator variability and en-
hancing measurement accuracy [8]. However, challenges such as
algorithm performance in poor-quality images and high maternal
BMI were noted [9-11].

Fetal Echocardiography: Twenty-three studies addressed Al
applications in fetal echocardiography. Al-assisted US improved
the detection of congenital heart diseases (CHD) by automating
the acquisition of standard views such as the four-chamber view
(4CV) and outflow tracts. Studies reported significant reductions in
examination time and increased diagnostic accuracy. Nevertheless,
limitations included the need for high-quality images and training
with pathological cases to improve algorithm performance [12-14].

Fetal Neurosonography: Nineteen studies explored Al applica-
tions in fetal neurosonography, focusing on brain development and
abnormality detection. Al models facilitated the acquisition of stan-
dard head planes and automated the detection of key anatomical
structures. Benefits included reduced workload for sonographers
and improved accuracy in measuring small structures. However,
rapid anatomical development of the fetal brain posed challenges
for Al algorithms, necessitating further refinement [15-17].

Placental and Umbilical Cord Assessment: Twenty articles
investigated Al applications in assessing placental and umbilical
cord characteristics. Al algorithms showed effectiveness in local-
izing and measuring placental volume, tissue texture, and vascu-
larization. These advancements hold potential for early prediction
of complications such as fetal growth restriction and hypertensive
disorders. Yet, the difficulty in identifying the interface between
the placenta and myometrium, particularly in early pregnancy, re-
mained a limitation [18].

Detection of Fetal Malformations: Eleven studies focused on
Al applications in detecting fetal malformations during the first and
second trimester scans. Automated detection and measurement of
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Nuchal Translucency (NT) and identification of structural anoma-
lies were significantly enhanced by Al. These improvements prom-
ised reduced workload and higher diagnostic accuracy. However,
challenges such as small data sets for rare anomalies and the need
for real-time application persisted [19-23].

Prediction of Gestational Age: Ten studies addressed the
use of Al in predicting Gestational Age (GA). Al algorithms utiliz-
ing measurements of fetal head, abdomen, and femur showed high
accuracy in estimating GA. Particularly in low-resource settings,
Al-assisted point-of-care US demonstrated potential in providing
accurate GA estimates without the need for experienced sonogra-
phers. The primary limitation was the reduced accuracy in early
and late stages of pregnancy [24-27].

Other Applications in Obstetrics: Additional studies explored
Al applications in various obstetric fields, including fetal lung matu-
ration, maternal factors, early pregnancy, intrapartum sonography,
and workflow analysis. Al-assisted US improved diagnostic accura-
cy, reduced examination time, and enhanced workflow efficiency
across these applications. However, challenges such as algorithm
training with pathological cases and the need for quality control
mechanisms were noted [28,29].

Applications in Gynecology
Adnexal Masses

Eleven studies investigated Al applications in the assessment
of adnexal masses. Al algorithms demonstrated high accuracy in
distinguishing between benign and malignant tumors using 2D and
color Doppler US images. Despite the promising results, limitations
included the need for larger, diverse data sets and consideration of
clinical context in diagnostic decision-making [30,31].

Breast Masses

Eight studies focused on Al applications in breast US imaging.
Al-assisted US showed potential in improving lesion detection and
classification, particularly in dense breast tissues. The benefits
included reduced unnecessary biopsies and shorter examination
times. However, challenges such as the need for high-quality images
and training with borderline cases persisted [32].

Endometrium

Five studies explored Al applications in evaluating endometrial
characteristics. Al algorithms demonstrated high accuracy in as-
sessing endometrial thickness and texture. The use of 3D US imag-
es provided improved identification of the endometrial-myometrial
junction. Limitations included reduced accuracy in thin endometria
and the need for manual selection of regions of interest [33,34].

Pelvic Floor

Six studies addressed Al applications in pelvic floor assess-
ment. Al-assisted US enabled reliable detection of pelvic organ pro-
lapse and measurement of pelvic anatomical landmarks. The signif-
icant reduction in examination time facilitated better patient care.
Challenges included operator dependency and the need for manual
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selection of regions of interest before analysis [35].
Other Applications in Gynecology

Eleven studies explored various Al applications in gynecolo-
gy, including endometriosis, premature ovarian failure, uterine fi-
broids, follicle tracking, and ectopic pregnancies. Al-assisted US im-
proved diagnostic accuracy and reduced examination time across
these applications. However, limitations such as the need for larger
data sets and external validation were noted [36].

Discussion

The integration of Artificial Intelligence (AI) into Ultrasound
(US) imaging within Obstetrics and Gynecology (OB/GYN) rep-
resents a significant advancement, promising improvements in
diagnostic accuracy, workflow efficiency, and overall patient care.
This review highlights the current applications, benefits, and chal-
lenges of Al-assisted US in OB/GYN, drawn from an analysis of 189
studies published between 1994 and 2023.

Benefits of Al in Ultrasound Imaging

Al has shown considerable potential in enhancing the diagnos-
tic capabilities of US imaging. By automating measurements and
standardizing image interpretation, Al can reduce inter- and in-
tra-operator variability, which is a common challenge in traditional
US imaging [1,24]. For instance, Al-assisted measurements of fetal
biometry, such as head circumference, abdominal circumference,
and femur length, have demonstrated improved accuracy and con-
sistency compared to manual methods [12]. This consistency is cru-
cial for monitoring fetal growth and development, which directly
impacts clinical decision-making. In fetal echocardiography, Al has
facilitated the automated acquisition of standard views, significant-
ly reduced examination time and improving the detection rates of
Congenital Heart Diseases (CHD) [30]. Similarly, Al applications in
fetal neurosonography have enhanced the detection and measure-
ment of key brain structures, contributing to early diagnosis and
intervention for neurodevelopmental abnormalities [10,14,21].
These advancements underscore the role of Al in improving diag-
nostic accuracy and enabling timely medical interventions. Al has
also been instrumental in assessing placental and umbilical cord
characteristics, which are critical for predicting and managing com-
plications such as fetal growth restriction and hypertensive disor-
ders [17,25]. Automated analysis of placental volume, tissue tex-
ture, and vascularization can provide valuable insights that might
be missed in manual assessments, thus enhancing prenatal care.

Challenges and Limitations

Despite its promise, Al-assisted US in OB/GYN is not without
challenges. One of the primary limitations is the performance of Al
algorithms in poor-quality images, which can be influenced by fac-
tors such as high maternal BM], fetal position, and low contrast due
to reduced amniotic fluid [6,9,17]. These conditions can impede
the algorithm’s ability to accurately detect and measure anatomi-
cal structures, necessitating further refinement and robust training
with diverse datasets. Another significant challenge is the need for
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extensive training of Al models with pathological cases to improve
their diagnostic capabilities. Many current Al applications have
been trained predominantly on normal cases, which limits their
effectiveness in identifying and diagnosing rare or complex abnor-
malities [30-36]. This gap highlights the necessity for large, anno-
tated datasets that encompass a wide range of pathological condi-
tions to enhance the generalizability and reliability of Al models.
Ethical considerations and the “black box” nature of Al also pose
challenges. The opacity of Al decision-making processes can hin-
der clinician trust and acceptance. Efforts to develop explainable Al
(XAI) systems, which provide insights into how Al algorithms reach
their conclusions, are crucial for fostering clinician confidence and
promoting the integration of Al into clinical practice [1,4,31,36].

Future Directions

The future of Al in US imaging for OB/GYN holds great potential,
with ongoing research aimed at addressing current limitations and
expanding applications. Future studies should focus on improving
algorithm robustness by incorporating diverse and extensive train-
ing datasets that include a broad spectrum of normal and patholog-
ical cases. Additionally, enhancing real-time application capabilities
and developing quality control mechanisms will be essential for
ensuring the clinical applicability and reliability of Al-assisted US.
The development of XAl systems will be critical for addressing eth-
ical concerns and increasing clinician trust in Al technologies. By
making Al decision-making processes more transparent, clinicians
can better understand and verify Al-generated diagnoses, thus fa-
cilitating more informed and confident clinical decisions. Moreover,
expanding Al applications to include other aspects of maternal and
fetal health, such as predicting adverse pregnancy outcomes and
improving surgical planning, will further enhance the role of Al in
OB/GYN. Collaborative efforts between Al developers, clinicians,
and researchers will be vital for advancing these technologies and
ensuring they meet the evolving needs of clinical practice.

Conclusion

Al-assisted US imaging represents a transformative advance-
ment in OB/GYN, offering significant benefits in diagnostic accura-
cy, efficiency, and patient care. While challenges remain, ongoing
research and development efforts are poised to address these is-
sues and expand the clinical applications of Al in this field. By har-
nessing the potential of Al, the future of OB/GYN diagnostics and
care promises to be more precise, efficient, and patient-centered.
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