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Abstract

Evidence-based medical evidence has shown that homocysteine (Hcy) is an independent risk factor for atherosclerosis (As). If the 
pathogenesis of Hcy induction As can be elucidated, it will provide an important theoretical basis for the prevention and clinical 
treatment of As. Vascular smooth muscle cells (VSMC) are the main components of the vascular media, and the proliferation, 
migration, and phenotypic transformation of VSMC play an important role in the pathogenesis of Hcy induced As. This paper reviews 
the mechanisms related to the proliferation, migration, and phenotypic transformation of VSMC during Hcy induction of As. 
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Introduction
Atherosclerosis (As) is an important basis lesion in 

many cardiovascular and cerebrovascular diseases such as 
ischemic cardiomyopathy and cerebral stroke. Homocysteine 
(Hcy) is an independent risk factor for atherosclerosis (As). 
Hyperhomocysteinemia (HHcy) can induce As, but the pathogenesis 
is unclear. Vascular smooth muscle cells (VSMC) are the main 
components of the vascular media and the main source of foam 
cells in As plaques. Hcy can induce the proliferation, migration, and 
phenotypic transformation of VSMC, which plays an important role 
in the pathogenesis of As induced by Hcy. This paper reviews the 
mechanisms related to the proliferation, migration and phenotypic 
transformation of VSMC during Hcy induction of As.

The Main Pathogenesis of Atherosclerosis
Atherosclerosis (As) is a chronic compensatory arterial 

inflammatory response associated with abnormal lipid metabolism 
and changes in the composition of blood vessel walls, which is the  

 
main cause of cardiovascular disease (CVD). It is considered to be 
the common pathological basis of most cardiovascular diseases 
such as myocardial infarction, stroke, and peripheral artery 
disease [1]. The formation of As lesions is a chronic inflammatory 
process involving complex signal networks and a variety of effector 
molecules [2-4]. Currently, the main theories on the pathogenesis 
of As include [5]: inflammatory response theory [6], oxidative 
stress theory [7], lipid infiltration theory [8,9], homocysteine 
theory, thrombus formation theory [10], and immune injury 
theory. It is believed that the formation of As is mainly caused 
by circulating factors, cholesterol, low density lipoprotein, 
inflammatory factors, chemokines, and a variety of cells in the 
vascular wall. Including the results of interactions among vascular 
endothelial cells, lymphocytes, monocytes/macrophages, and 
vascular smooth muscle cells (VSMC) [11], which are specifically 
manifested as damage of vascular intima, activation of chemokines 
and inflammatory factors, lipid infiltration, and dysfunction 
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of endothelial cells [12]. VSMC proliferation and phenotypic 
transformation [13], macrophage-like cell formation, migration, 
foam cell formation [14], and atheromatous plaque formation are 
main pathologic processes in As formation. VSMC is one of the 
active cells in the As plaque proliferation system [15,16], and the 
proliferation, migration and phenotypic transformation of VSMC 
and the injury of vascular endothelial cells are considered to be 
the main initial links in the formation of As [17,18]. Although many 
studies have been conducted on As, the mechanisms that cause 
proliferation, migration and phenotypic transformation of VSMC 
remain unclear.

Proliferation, Migration, and Phenotypic 
Transformation of VSMC Play an Important 
Role in the Pathogenesis of As

VSMC is a highly specific cell located in the middle layer of 
the arterial wall and is the main source of macrophage-like and 
foam cells in As plaques [8,19]. The main function of VSMC is to 
regulate vascular elasticity and maintain vascular tone. During 
embryonic vascular development, VSMC gradually differentiated 
from immature undifferentiated/poorly differentiated phenotype 
to mature highly differentiated phenotype. When the vascular wall 
is stimulated by internal and external environmental factors or the 
VSMC is stimulated by inflammatory factors, cytokines, vasoactive 
peptides, oxidative stress, drug damage, mechanical effects, and 
other pathological factors, on the one hand, the imbalance of 
VSMC proliferation and apoptosis can be caused, resulting in VSMC 
proliferation and migration. At the same time, VSMC can transform 
from a highly mature differentiated phenotype to a dedifferentiated/
poorly differentiated phenotype, and obtain proliferation and 
phagocytosis capabilities, and eventually form macrophage-
like cells. This pathological process is called the phenotypic 
transformation of VSMC [20]. The proliferation, migration, and 
cell phenotypic transformation of VSMC may be key events in the 
pathological process of various vascular diseases such As, and 
play an important role in the occurrence and development of As 
[1,5,13]. According to the maturity of VSMC differentiation, VSMC 
can be divided into two phenotypes: highly differentiated systolic 
phenotype (differentiated type) and poorly differentiated synthetic 
phenotype (dedifferentiated or undifferentiated type) [21,22]. 
The systolic phenotype of VSMC is highly differentiated, spindle-
shaped, rich in intracellular muscle fibers, and mainly manifested 
as systolic function, poor proliferation and migration ability. The 
main molecular markers were α-smooth muscle actin (α-SMA) 
[23], smooth muscle 22α(Smooth Muscle 22α, SM22α) [24,25], 
calponin, Smooth muscle myosin heavy chain (SM-MHC), smooth 
muscle cell actin [13,26-28]. However, the synthetic phenotype of 
VSMC has a low differentiation degree, strong proliferation and 
migration ability, reduced intracellular muscle fibers, reduced 
or disappeared systolic function, and increased contents of 
intracellular rough endoplasmic reticulum, Golgi apparatus and 
ribosome, and stronger ability to secrete and synthesize cytokines 
and extracellular matrix than the systolic phenotype. In addition, 

VSMCS undergoing phenotypic transformation can also acquire 
macrophage-like markers and properties, including LGALS3/
Mac2, CD11b, F4/80, and CD68 [13], and have phagocytic function. 
The ability of synthetic phenotypic VSMCS to absorb lipids was 
also increased, The unique molecular markers of osteopontin 
(OPN) and thrombospondin-1 were Osteopontin (OPN) and 
Thrombospondin-1. TSP1), epidermal growth factor, epiregulin, 
etc. [29-31]. The phenotypic transformation of VSMC from systolic 
phenotype to synthetic phenotype has long been considered 
important for As. The phenotypic transformation of VSMC during 
the occurrence of As is not only the main feature of VSMC in As, 
but also the premise for VSMC to form macrophage-like cells and 
myogenic foam cells and play an important role in plaque formation 
and development [13,32]. Under normal conditions, VSMC exists 
in the media of arterial wall with a contractile phenotype, which 
is conducive to maintaining the contraction of smooth muscle cells 
and vascular tone to maintain vascular wall homeostasis. However, 
when VSMC is subjected to different pathologic and physiological 
stimuli, changes occur in the surrounding environment of the cells, 
including growth factors, extracellular matrix, mechanical forces, 
oxidative stress, intercellular interactions, and neuroregulation, 
resulting in phenotypic changes of VSMC, from a highly 
differentiated contractiles phenotype to an undifferentiated or 
poorly differentiated synthetic phenotype. They began to proliferate, 
migrate and synthesize excessive extracellular matrix to form 
macrophage-like cells, resulting in increased lipid phagocytosis of 
VSMC, which could take in large amounts of oxidized low-density 
lipoprotein, and migrate from the arterial media to the inner artery 
to transform into foam cells [13,15,19]. Foam cells are deposited 
under the intima of the damaged blood vessels, causing local 
vascular lumen stenosis [33,34] and changes in hemodynamics, 
eventually leading to the formation of atherosclerotic plaques. 
Literature has shown that, in plaque formation of As, 70% of plaque 
components are composed of VSMC and its derivatives [35,36], and 
40% of foam cells, which constitute an important part of lesions, 
are from VSMC, which is called smooth muscle-derived foam cells 
[37,38]. It is suggested that VSMC is an important component 
in the formation of As. At the same time, the transformation 
from systolic phenotype to synthetic phenotype of VSMC can 
promote endometrial hyperplasia and the formation of As lesions 
and abnormal phenotype transformation of VSMC is therefore 
considered to be one of the main markers of the progression of As 
lesions [39], As well as an important step in the development of 
AS restenosis, vascular remodelling and other pathophysiological 
processes [40,41]. It is certain that the transformation of VSMC 
into foam cells not only damages the vasoconstrictive function, 
but also promotes its own proliferation, migration and secretion of 
pro-inflammatory mediators [42], and the expression of different 
phenotypic markers is regulated by various factors. Such as 
platelet-derived growth factor (PDGF), transforming growth factor 
β, TGF-β), interleukin, endothelin, Angiotensin and microRNAs, 
etc. [13,15]. In carotid artery ligation animal models, blocking the 
phenotypic transformation of VSMC can inhibit the formation of 
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intima damage [43,44], and promoting this process can accelerate 
the development of As in mice [45]. Meanwhile, the phenotypic 
transformation of VSMC also plays an important role in the stability 
of As and plaque, and inhibiting the phenotypic transformation of 
VSMC may be beneficial for advanced As [15]. Although there have 
been some reports on the proliferation, migration and phenotypic 
transformation of VSMC, the specific molecular mechanism has not 
been clarified and needs further study.

Hcy Can Induce the Occurrence of As
Homocysteine (Hcy), also known as homocysteine, is a kind of 

sulfur-containing amino acid, which is the intermediate product of 
methionine metabolism. Normally, plasma Hcy levels are very low; 
When the plasma Hcy concentration is higher than 15 μmol/L, it 
is called hyperhomocysteinemia (HHcy). Evidence of evidence-
based medicine shows that HHcy is an independent risk factor 
for As [46,47], and Hcy induces As through a variety of pathway 
interactions and correlations. Every 5 μmol/L increase in plasma 
Hcy is equivalent to a 0.5 mmol/L increase in cholesterol, and the 
vascular risk increases by about 1/3 [48]. Hcy is closely associated 
with the risk of coronary heart disease, stroke, and peripheral 
vascular diseases, and is no less harmful than hyperlipidemia. 
Known as the “cholesterol of the 21st century”, HCY has been 
identified as a potentially important risk factor for cardiovascular 
diseases [49-51]. The Chinese Guidelines for the Prevention and 
Treatment of Hypertension (2018 Revision) clearly proposed 
serum Hcy concentration as a selective item for laboratory 
tests in the diagnostic assessment of hypertension. HHcy(≧15 
μmol/L), together with old age, smoking, impaired glucose 
tolerance, dyslipidemia, abdominal obesity and other factors, are 
considered to be important cardiovascular risk factors affecting 
the cardiovascular prognosis of patients with hypertension [52], 
indicating that reducing blood Hcy is an important strategy for 
collaborative prevention and treatment of cardiovascular diseases. 
As an inflammatory stimulant, Hcy promotes the occurrence and 
development of AS through various mechanisms such as affecting 
the function of endothelial cells and VSMC, participating in oxidative 
stress and inflammatory response, and altering gene expression 
activity [53,54].

Hcy Promotes the Proliferation, Migration, and 
Phenotypic Transformation of VSMC

At present, the mechanism of Hcy causing As through vascular 
endothelial cell injury has been relatively clear [55,56]. It includes 
the following aspects: (1) direct endothelial injury through 
oxidation and inflammation [57,58]; (2) Induced oxidative stress 
mitochondrial dysfunction and endoplasmic reticulum stress 
[59-61]: (3) the protective effect of NO was weakened [62]; (4) 
Interference with DNA and protein methylation [63,64]; (5) 
Promote adhesion and penetration [65]. The promotion effect of 
Hcy on the proliferation of VSMC is considered to be one of the 
important pathological basis of As [66], however, the mechanism 

of Hcy causing the proliferation, migration and expression 
transformation of VSMC is not very clear. 

Studies have shown that, on the one hand, Hcy can act on 
related growth factors and genes, activate VSMC, and promote 
the proliferation and migration of VSMC. PDGF is an important 
mitogenic factor, which can stimulate specific cell mitosis and 
promote cell proliferation. Hcy can up-regulate PDGF levels 
through DNA demethylation of human and mice vascular 
endothelial cells, affect the cross-linking between vascular 
endothelial cells and VSMC, and lead to activation of VSMC [46]. 
Hcy affects the methylation of As-related genes and mediates the 
overall methylation state of VSMC proliferation [67,68]. Hcy can be 
hypermethylated through promoter regions of p53, PTEN, MFN2, 
etc. Demethylation of PDGF promoter region affects epigenetic 
regulation of p53, PTEN, MFN2, PDGF, etc., thus promoting 
proliferation of VSMC [69-71]. Hcy can cause dysregulation of the 
expression and activity of metalloproteinase 2/9(MMP-2/9) and 
tissue inhibitor of metalloproteinase 2(TIMP-2) in VSMC, affect 
the dynamic balance of extracellular matrix, degrade extracellular 
matrix such as basement membrane, destroy the physiological 
barrier of VSMC migration, and induce the proliferation and 
migration of VSMC in rats [72]. Hcy (50-1000 μmol/L) increased the 
production and activation of MMP-2 and the expression of TIMP-
2 in rat VSMC in a dose-dependent manner, while the expression 
of MMP-2 was up-regulated and the activity was down-regulated 
when incubated with 5000 μmol/L Hcy [73]. It is possible that Hcy 
promotes the expression of the protein Concave protein-1, which 
inhibits the activity of endothelial nitric oxide synthase (eNOS) 
and the production of NO and activates the expression of PI3K and 
p-Akt. The proliferation and migration of thoracic aorta smooth 
muscle cells cultured in vitro in SD rats were induced, leading 
to As [74,75]. Meanwhile, compared with the control group, the 
proliferation and migration ability of VSMC in aorta of rats in the 
Hcy stimulation group were significantly enhanced, the mRNA and 
protein expression levels of MMP-2, MMP-9, and p-P70S6K were 
significantly increased, and the expression levels of p21 and p27 
were significantly decreased [76]. These results suggest that Hcy 
can induce the proliferation and migration of VSMC, and play an 
important role in the pathogenesis of As induced by Hcy. 

On the other hand, Hcy affects collagen synthesis and 
metabolism in VSMC. In Cbs-/- mice aortic VSMC, the effect of 
Hcy on collagen secretion was observed. It was found that Cbs-
/- mice with severe HHcy had significantly thickened vascular 
intima, a higher percentage of lumen stenosis, and significantly 
increased the deposition of elastin and collagen in the newborn 
intima and the secretion of collagen in VSMC. These results suggest 
that Hcy stimulates increased neointima formation, elastin and 
collagen deposition, contributing to the development of vascular 
remodelling [77]. 

Thirdly, Hcy can promote lipid deposition in blood vessel 
walls. Hcy can induce lipid deposition in the arterial wall, an 
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increase of foam cells, plaque calcification, and low-density 
lipoprotein oxidation. Hcy can promote oxidative stress reaction 
in VSMC and generate reactive oxygen species (ROS). Through 
oxidative modification of low-density lipoprotein, oxidized low-
density lipoprotein (ox-LDL) increases in oxidized low-density 
lipoprotein (Oxidized low-density lipoprotein), thereby promoting 
foam cell generation [49]. At the same time, ox-LDL itself is highly 
cytotoxic to vascular endothelial cells, macrophages and VSMC. 
ox-LDL can directly damage vascular endothelial cells, activate 
monocytes in blood to swim to the wall of the bleeding tube and 
transform into macrophages, and activate VSMC to phagocytic ox-
LDL, and eventually form foam cells. Aggravate the occurrence 
and development of As [37-39,78]. Our research group also 
found that Hcy induced proliferation, migration and phenotypic 
transformation of VSMC by activating PI3K/Akt and mTOR 
signalling pathways. miRNA-145 can inhibit the activity of PI3K/Akt 
and mTOR pathways, and reduce the proliferation, migration and 
phenotypic transformation of VSMC induced by Hcy [79]. Lycium 
barbarum polysaccharide inhibits the PI3K/Akt signalling pathway 
by up-regulating the expression of miRNA-145 and alleviates 
the proliferation and phenotypic transformation of Hcy-induced 
VSMC [80]. By inhibiting the expression of CTRP9, Hcy negatively 
regulates the occurrence of endoplasmic reticulum stress, thereby 
inducing VSMC migration. Meanwhile, the up-regulation of DNMT1 
plays an important role in this process, suggesting that CTRP9 may 
be regulated by methylation [81].

Conclusion
These studies suggest that Hcy can affect the extracellular 

matrix, destroy the vascular basement membrane, and activate 
growth factors and related genes in VSMC, ultimately promoting 
the proliferation and migration of VSMC. Hcy induced proliferation 
and migration of VSMC is one of the important mechanisms of 
Hcy induced As [82]. VSMC over proliferate and migrate through 
basement membrane to endovascular subcutaneous, transforming 
into foam cells by phagocytosis of lipids, and eventually developing 
into fibrous plaques [83]. These results indicate that Hcy is 
closely related to the damage of As VSMC. Hcy can induce the 
proliferation, migration and phenotypic transformation of VSMC, 
and ultimately promote the formation of foam cells in As plaques. 
However, the above studies also have some shortcomings, such as 
the relatively independent and lack of internal correlation between 
the mechanisms, and it is not clear whether there is interaction 
between them. Furthermore, whether there are other unknown 
molecular mechanisms in the process of Hcy promoting the 
proliferation, migration and phenotypic transformation of VSMC, 
so As to promote the occurrence and development of As also needs 
further study.
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