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Introduction
Crohn’s disease and Ulcerative colitis are forms of chronic 

inflammatory diseases, characterized by transmural intestinal 
inflammation and stricture formation (Crohn’s disease) or 
continuous inflammation involving the rectum (ulcerative colitis). 
There is an increasing incidence of both forms of IBD in developed 
countries with one of the proposed factors being adopting the 
so-called Western diet [1]. The pathogenesis of IBD is not fully 
understood, but microbiome and environmental factors play 
a role in genetically susceptible individuals [2,3]. Diagnosis of 
IBD is complex and is based on clinical, biochemical, endoscopic, 
radiologic, and histologic findings. It is important to discriminate 
between both IBD phenotypes to form a therapeutic strategy and 
predict prognosis.

Several biomarkers associated with IBD have been studied, 
such as perinuclear antineutrophil cytoplasmic (pANCA), anti-
Saccharomyces cerevisiae antibodies (ASCAs), antibodies to 
exocrine pancreas (PABs), circulating noncoding RNAs such as 
miRNA and IncRNA, cathelicidin, CRP, and trefoil factor 3, but their  

 
use is not well adopted [4,5] and new biomarkers are needed to 
support diagnosis and aid therapy in IBD patients.

Role of the Microbiome
The human microbiome is defined as a community of 

microorganisms living in different parts of the human body. 
More than 1000 species have been described (85). The biggest 
concentration of microorganisms is in the colon and distal ileum, 
99% of them are of bacterial origin and 90% are of phylotypes 
Bacteroidetes and Firmicutes [6,7]. One of the main changes in 
the gut microbiome in IBD patients is on one side increasing 
number of phylum Proteobacteria, most of which are pathogens, 
including Escherichia coli (a variant called adherent-invasive), 
Enterobacteriaсeae, Klebsiela and Proteus spp, and reduced number 
of phylum Firmicutes on the other [8-11]. Feacalibacterium 
prausnitzii and Roseburia homonis, which are butyrate-producing 
microorganisms, are reported to be reduced in IBD patients. 
Butyrate is a short chain fatty acid, which is a main energy source 
for colonocytes and its lower concentrations in IBD patients aid 
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inflammation and disrupts intestinal barrier integrity [12-16]. On 
the other hand, Ruminoccocus gnavus, also from phylum Firmicutes 
has mucin-degrading properties and is reported in increased 
concentrations in IBD patients, mainly in Crohn’s disease, which 
aids in intestinal barrier integrity disruption [16,17].

Paneth cell dysfunction is also reported in IBD individuals. 
These cells play a key role in maintaining intestinal homeostasis 
by producing and secreting antimicrobial peptides such as lysosym 
and alpha-dephensins [18,19].

Change in gut microbiome is also associated in many trials with 
autoimmune conditions such as type 1 diabetes and rheumatoid 
arthritis [20,21], type 2 diabetes and obesity [22,23], colorectal 
cancer [24], heart disease [25] and IBD [26]. A key step in IBD 
pathogenesis is believed to be loss of immune tolerance to gut 
antigens of bacterial origin, which causes an abnormal immune 
response in a susceptible indivicual. Oral dysbiosis is also reported 
in IBD represented by change in Streptococcus and Prevotella 
in saliva. Furthermore, a positive correlation is observed with 
increased fecal calprotectin and interleukins [16,27-29]. In normal 
conditions gut microbiome has direct and indirect effect due to its 
metabolite diversity, thus aiding normal physiological processes, as 
well as other metabolic processes outside of the GI tract. 

What is Metabolomics?	
Metabolites are products of many biological processes in the 

body. Their presence and quantitative measurement in different 
biological substrates in the human organism (urine, feces, serum, 
tissue) can provide detailed information about the specific 
state, which the body represents, reflecting a specific metabolic 
phenotype [30]. Metabolomics is the study of these metabolites. It 
can be beneficial for diagnosis, monitoring therapy and determining 
the natural course of disease. The initiation of various metabolic 
reactions leads to the formation of the so-called metabolic markers 
that could subsequently be used to differentiate healthy from 
diseased [30].

There are two types of metabolomics-targeted analysis, where 
a particular metabolite is searched for and its concentration is 
measured, and untargeted, measuring the largest possible number 
of metabolites in а biological sample. Multiple methods are used 
to measure metabolites, but the main ones are proton nuclear 
magnetic resonance spectroscopy (H-NMR), liquid chromatography 
(LC), gas chromatography in combination with mass spectroscopy 
(MS), due to their high specificity and reproducibility of results.

Metabolites can be entirely of bacterial origin, but some of them 
after they are absorbed in the gastrointestinal tract, are processed 
(by hepatorenal conjugation, for example) and are then expelled 
from the body as co-metabolites.

Metabolomics in IBD-Change in Lipid 
Metabolism

Altered metabolism has already been established in some 
diseases, such as type 1 and type 2 diabetes mellitus, liver diseases 
(bile acids), neurodegenerative diseases (tryptophan metabolites), 
cardiovascular diseases and colorectal cancer (long-chain fatty 
acids) [16,31,32].

In some of the patients with IBD (about 15%), despite having 
performed the necessary tests to establish the diagnosis, it is 
impossible to distinguish Crohn’s disease from ulcerative colitis. In 
this context, metabolomics could distinguish healthy from diseased, 
as well as Crohn’s disease from ulcerative colitis, by examining 
metabolites in various biological products such as urine [33-35], 
serum [36-41], and feces [30,35,41,42]. In a study by Elizabeth A. 
Scoville, et al. from 2012 a total of 173 metabolites were found that 
differed in patients with IBD from healthy controls, 27 of them were 
increased and 146 were decreased, mainly affecting metabolites 
related to lipid metabolism - fatty acids, acylcarnitine, sphingolipids 
and bile acids. This difference was more pronounced in patients 
with Crohn’s disease than in those with ulcerative colitis [43].

Fatty acids are important for maintaining intestinal homeostasis 
and have a role in inflammatory processes - some have a pro-
inflammatory, others anti-inflammatory effect. Therefore, a change 
in their levels affects intestinal inflammation [44]. Short-chain fatty 
acids (SCFA) such as butyrate, acetate and propionate also have 
a trophic effect on the colonic mucosa and are a source of energy 
for colonocytes. Butyrate is also an important immunomodulator, 
inducing production of Tregs and mucus, thereby suppressing 
inflammation [45].

Short-chain fatty acids (SCFA) are one of the first identified 
abnormal metabolites in IBD. Decreased levels have been reported 
in a number of studies. [34,41,42,46] One of the first by Marchesi, 
et al. from 2007 succeeded in differentiating healthy subjects from 
controls as well as Crohn’s disease from ulcerative colitis. They 
reported low fecal levels of SCFA, including dimethylamine and 
trimethylamine [30,42,42].

Low levels of SCFA butyrate and propionate are associated 
with dysbiosis in Crohn’s disease which is due to reduced levels 
of butyrate-producing organisms Fecalibacterium prausnitsii 
and Roseburia homonis [46]. In this regard, in is a study in which 
patients with Crohn’s disease were treated with prebiotics (inulin 
and butyrate) a decrease in the levels of Ruminococcus gnavus was 
observed, high levels of which are associated with dysbiosis in IBD 
[46] and an increase in the levels of Bifidobacterium longum, leading 
to a reduction in disease activity [16,47]. In a study by Pal, et al. 
from 2015 in children with IBD, treatment with butyrate resulted 
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in an positive effect on intestinal disease activity [48]. The intake 
of food rich in fiber increases the level of SCFA, improves dysbiosis 
and quality of life in patients with UC [7,49]. Another important 
energy source for colonocytes, responsible for about 30% of their 
energy needs, is glutamine, which also has altered levels, mostly 
reduced, which enabled Hisamatsu, et al. from 2012 in their study, 
calculating AminoIndex based on multivariate analysis of amino 
acid profiles from the serum of patients with IBD, to differentiate 
CD from UC [42,50].

Polyunsaturated fatty acids are also metabolites found at 
abnormal levels in patients with IBD. They are associated with 
intestinal inflammation through eicosanoids derived from 
arachidonic acid [51-54] and correlate with inflammatory cytokines 
[55]. A 2019 study by Lai, et al. reported decreased levels of long-
chain fatty acids such as docosahexaenoic, linolenic, and arachidonic 
acids and medium-chain fatty acids such as pelargonic and caprylic 
acids in the serum of patients with Crohn’s disease [5,43]. Increased 
levels of eicosatrienoic, omega-3-, docosapentaenoic, and omega-6 
fatty acids, which are thought to have anti-inflammatory activity, 
have also been reported [45]. This increase could be due to 
malabsorption caused by the inflammation.

Another lipid-associated change is in LDL, HDL and VLDL. 
Patients with Crohn’s disease have lower fecal cholesterol levels 
compared to healthy controls [45], as well as lower serum LDL and 
HDL levels, more pronounced in CD. The reason for this is that pro-
inflammatory cytokines such as TNF-alpha, IL-1 and INF-gamma 
inhibit the expression of lipoprotein lipase [5,56,57]. Closely related 
to lipid metabolism are prostaglandins, which are produved from 
arachidonic acid. Low levels of prostaglandins have been found in 
CD, with the exception of PGE2, which activates Th17 lymphocytes, 
which in turn activate dendritic cells and increase IL-23 production 
[5,58]. Bile acids –another altered metabolite, mainly secondary 
bile acids deoxycholic acid and lithocholic acid, are significantly 
reduced in UC patients. They suppress inflammation by inhibiting 
the synthesis of proinflammatory mediators and suppressing 
intestinal epithelial apoptosis [7,59,60]. They also exert an 
antimicrobial effect, and their absence contributes to dysbiosis 
[16,61].

Alteration in the Tricarboxylic Acid (TCA) Cycle 
and its Metabolites

Tricarboxylic acid (TCA) cycle, also known as the Krebs 
cycle, is the final process in the oxidation of proteins, lipids, and 
carbohydrates. A significant reduction of intermediate metabolites 
such as citrate, aconitate, alpha-ketoglutarate, succinate, fumarate 
and malate were found in the serum of CD patients compared to 
controls and UC patients. Moreover, the metabolite reported in 
lowest levels in CD patients (11-fold compared to controls and 18-

fold compared to CD patients) is beta-hydroxybutyrate, which is 
synthesized from acetyl-CoA [62]. In addition to serum, low levels 
of succinate and citrate are also observed in urine. [33,37,63]. 
Alonso, et al. [64] even suggested citrate as a potential biomarker, 
mainly in CD patients, as its levels correlate with disease activity 
[5,65].

Alterations in Other Metabolites
Alterations in essential amino acid levels have also been 

reported. An example of this is the altered level of tryptophan, 
which was elevated in the feces of patients with IBD compared to 
controls [5,66]. On the other hand, Nikolaus, et al. found low levels 
of this amino acid in the serum of patients with IBD [67]. In some 
studies, administration of tryptophan and its metabolites (indole-
3-aldehyde, indole-3-propionic acid, and indole-3-acetic acid) 
suppresses colonic inflammation, protects epithelial integrity, and 
reverses colitis-associated microbial dysbiosis [7,68-71].

Phenylalanine, another amino acid with anti-inflammatory 
effects (suppresses TNF production) [72], was increased in serum 
and decreased in feces, reported by two different authors [40,43]. 
High levels of taurine, glycine, lysine, and alanine were also found 
in feces. This is most likely due to impaired epithelial absorption 
due to intestinal inflammation, but could also be due to dysbiosis, 
as some bacteria use amino acids for their metabolism [16,73,74]. 
An increase in some polyamines - putrescine and cadaverine - was 
observed in the feces of patients with CD and UC, which suggests 
that these polyamines have a negative effect on disease [7,75]. An 
increase in fecal and serum taurine levels has also been reported 
[7,34,40,46, 76-79].

Also of interest is the co-metabolite of mixed origin (mammalian 
and microbial) hippurate, or N-benzoylglycine. It is produced by 
bacterial fermentation of aromatic compounds introduced from the 
diet (aromatic amino acids, polyphenols, and purines) to benzoic 
acid with subsequent conjugation with glycine in the liver. It was 
found to be significantly lower in the urine of patients with IBD 
compared to controls. Like it is formate, which is also in low amounts 
[16,32,33,35,37,80]. This suggests its potential use as a biomarker. 
A similar co-metabolite reported in low concentrations in urine 
is p-cresol sulfate, which is derived from bacterial metabolism of 
tyrosine, primarily by Clostridia spp [32,44, 81].

Histidine metabolism is also altered. It is converted by 
microbiota into ergothioneine. This metabolite has antioxidant 
and neuroprotective properties. It was also found in low amounts 
reported by Lai, et al. from 2019. It is assumed that this is due to the 
damage or lack of its transporter (OCTN1), which is expressed only 
in the small intestine, which suggests its use for the differentiation 
of CD from UC [5,43,82-85].	
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Conclusion
Based on all the above, a few metabolites in patients with IBD 

are altered to varying degrees. There is data for some of them that 
have the potential to be used as biological markers to differentiate 
Crohn’s disease from ulcerative colitis, and some correlate with 
the activity of the inflammatory process. Commensal microbiota 
and their metabolites are candidates to produce new probiotics 
containing F. prausnitzii, Akkermansia muciniphilia, Bacteoides 
fragilis due to their butyrate-producing properties. However, 
more data is needed for these findings to be standardized and 
implemented in routine clinical practice.
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