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Abstract

Inflammatory bowel diseases comprise of ulcerative colitis and Crohn’s disease, both of which have increasing incidence. Despite
not having completely understood pathogenesis, genetic factors, environmental factors, and microbiota are thought to play a role
in a predisposed individual. Common symptoms include abdominal pain, diarrhea, fever, weight loss and rectal bleeding. Diagnosis
is made by clinical, laboratory, endoscopic, radiologic, and histologic examinations. Nevertheless, about 15% of patients do not
have a definitive diagnosis. Metabolomics measures metabolites in a biological sample (feces, serum, urine, tissue, and air) thereby
having the potential to clarify disease pathogenesis and find new biomarkers, which will then aid in diagnosis, guide therapy, and

give prognosis.

Keywords: IBD, Crohn’s disease, Ulcerative colitis, Microbiome, Metabolome, Metabolomics, Biomarkers

Introduction

Crohn’s disease and Ulcerative colitis are forms of chronic
inflammatory diseases, characterized by transmural intestinal
inflammation and stricture formation (Crohn’s disease) or
continuous inflammation involving the rectum (ulcerative colitis).
There is an increasing incidence of both forms of IBD in developed
countries with one of the proposed factors being adopting the
so-called Western diet [1]. The pathogenesis of IBD is not fully
understood, but microbiome and environmental factors play
a role in genetically susceptible individuals [2,3]. Diagnosis of
IBD is complex and is based on clinical, biochemical, endoscopic,
radiologic, and histologic findings. It is important to discriminate
between both IBD phenotypes to form a therapeutic strategy and

predict prognosis.

Several biomarkers associated with IBD have been studied,
such as perinuclear antineutrophil cytoplasmic (pANCA), anti-
Saccharomyces cerevisiae antibodies (ASCAs), antibodies to
exocrine pancreas (PABs), circulating noncoding RNAs such as
miRNA and IncRNA, cathelicidin, CRP, and trefoil factor 3, but their

use is not well adopted [4,5] and new biomarkers are needed to
support diagnosis and aid therapy in IBD patients.

Role of the Microbiome

The human microbiome is defined as a community of
microorganisms living in different parts of the human body.
More than 1000 species have been described (85). The biggest
concentration of microorganisms is in the colon and distal ileum,
99% of them are of bacterial origin and 90% are of phylotypes
Bacteroidetes and Firmicutes [6,7]. One of the main changes in
the gut microbiome in IBD patients is on one side increasing
number of phylum Proteobacteria, most of which are pathogens,
including Escherichia coli (a variant called adherent-invasive),
Enterobacteriaceae, Klebsiela and Proteus spp, and reduced number
of phylum Firmicutes on the other [8-11]. Feacalibacterium
prausnitzii and Roseburia homonis, which are butyrate-producing
microorganisms, are reported to be reduced in IBD patients.
Butyrate is a short chain fatty acid, which is a main energy source
for colonocytes and its lower concentrations in IBD patients aid
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inflammation and disrupts intestinal barrier integrity [12-16]. On
the other hand, Ruminoccocus gnavus, also from phylum Firmicutes
has mucin-degrading properties and is reported in increased
concentrations in IBD patients, mainly in Crohn’s disease, which
aids in intestinal barrier integrity disruption [16,17].

Paneth cell dysfunction is also reported in IBD individuals.
These cells play a key role in maintaining intestinal homeostasis
by producing and secreting antimicrobial peptides such as lysosym
and alpha-dephensins [18,19].

Change in gut microbiome is also associated in many trials with
autoimmune conditions such as type 1 diabetes and rheumatoid
arthritis [20,21], type 2 diabetes and obesity [22,23], colorectal
cancer [24], heart disease [25] and IBD [26]. A key step in IBD
pathogenesis is believed to be loss of immune tolerance to gut
antigens of bacterial origin, which causes an abnormal immune
response in a susceptible indivicual. Oral dysbiosis is also reported
in IBD represented by change in Streptococcus and Prevotella
in saliva. Furthermore, a positive correlation is observed with
increased fecal calprotectin and interleukins [16,27-29]. In normal
conditions gut microbiome has direct and indirect effect due to its
metabolite diversity, thus aiding normal physiological processes, as
well as other metabolic processes outside of the GI tract.

What is Metabolomics?

Metabolites are products of many biological processes in the
body. Their presence and quantitative measurement in different
biological substrates in the human organism (urine, feces, serum,
tissue) can provide detailed information about the specific
state, which the body represents, reflecting a specific metabolic
phenotype [30]. Metabolomics is the study of these metabolites. It
can be beneficial for diagnosis, monitoring therapy and determining
the natural course of disease. The initiation of various metabolic
reactions leads to the formation of the so-called metabolic markers
that could subsequently be used to differentiate healthy from
diseased [30].

There are two types of metabolomics-targeted analysis, where
a particular metabolite is searched for and its concentration is
measured, and untargeted, measuring the largest possible number
of metabolites in a biological sample. Multiple methods are used
to measure metabolites, but the main ones are proton nuclear
magnetic resonance spectroscopy (H-NMR), liquid chromatography
(LC), gas chromatography in combination with mass spectroscopy
(MS), due to their high specificity and reproducibility of results.

Metabolites can be entirely of bacterial origin, but some of them
after they are absorbed in the gastrointestinal tract, are processed
(by hepatorenal conjugation, for example) and are then expelled
from the body as co-metabolites.
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Metabolomics in
Metabolism

IBD-Change in Lipid

Altered metabolism has already been established in some
diseases, such as type 1 and type 2 diabetes mellitus, liver diseases
(bile acids), neurodegenerative diseases (tryptophan metabolites),

cardiovascular diseases and colorectal cancer (long-chain fatty
acids) [16,31,32].

In some of the patients with IBD (about 15%), despite having
performed the necessary tests to establish the diagnosis, it is
impossible to distinguish Crohn’s disease from ulcerative colitis. In
this context, metabolomics could distinguish healthy from diseased,
as well as Crohn’s disease from ulcerative colitis, by examining
metabolites in various biological products such as urine [33-35],
serum [36-41], and feces [30,35,41,42]. In a study by Elizabeth A.
Scoville, et al. from 2012 a total of 173 metabolites were found that
differed in patients with IBD from healthy controls, 27 of them were
increased and 146 were decreased, mainly affecting metabolites
related to lipid metabolism - fatty acids, acylcarnitine, sphingolipids
and bile acids. This difference was more pronounced in patients
with Crohn’s disease than in those with ulcerative colitis [43].

Fatty acids are important for maintaining intestinal homeostasis
and have a role in inflammatory processes - some have a pro-
inflammatory, others anti-inflammatory effect. Therefore, a change
in their levels affects intestinal inflammation [44]. Short-chain fatty
acids (SCFA) such as butyrate, acetate and propionate also have
a trophic effect on the colonic mucosa and are a source of energy
for colonocytes. Butyrate is also an important immunomodulator,
inducing production of Tregs and mucus, thereby suppressing

inflammation [45].

Short-chain fatty acids (SCFA) are one of the first identified
abnormal metabolites in IBD. Decreased levels have been reported
in a number of studies. [34,41,42,46] One of the first by Marchesi,
et al. from 2007 succeeded in differentiating healthy subjects from
controls as well as Crohn’s disease from ulcerative colitis. They
reported low fecal levels of SCFA, including dimethylamine and
trimethylamine [30,42,42].

Low levels of SCFA butyrate and propionate are associated
with dysbiosis in Crohn’s disease which is due to reduced levels
of butyrate-producing organisms Fecalibacterium prausnitsii
and Roseburia homonis [46]. In this regard, in is a study in which
patients with Crohn’s disease were treated with prebiotics (inulin
and butyrate) a decrease in the levels of Ruminococcus gnavus was
observed, high levels of which are associated with dysbiosis in IBD
[46] and an increase in the levels of Bifidobacterium longum, leading
to a reduction in disease activity [16,47]. In a study by Pal, et al.
from 2015 in children with IBD, treatment with butyrate resulted
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in an positive effect on intestinal disease activity [48]. The intake
of food rich in fiber increases the level of SCFA, improves dysbiosis
and quality of life in patients with UC [7,49]. Another important
energy source for colonocytes, responsible for about 30% of their
energy needs, is glutamine, which also has altered levels, mostly
reduced, which enabled Hisamatsu, et al. from 2012 in their study,
calculating Aminolndex based on multivariate analysis of amino
acid profiles from the serum of patients with IBD, to differentiate
CD from UC [42,50].

Polyunsaturated fatty acids are also metabolites found at
abnormal levels in patients with IBD. They are associated with
intestinal inflammation through eicosanoids derived from
arachidonicacid [51-54] and correlate with inflammatory cytokines
[55]. A 2019 study by Lai, et al. reported decreased levels of long-
chain fatty acids such as docosahexaenoic, linolenic, and arachidonic
acids and medium-chain fatty acids such as pelargonic and caprylic
acids in the serum of patients with Crohn’s disease [5,43]. Increased
levels of eicosatrienoic, omega-3-, docosapentaenoic, and omega-6
fatty acids, which are thought to have anti-inflammatory activity,
have also been reported [45]. This increase could be due to

malabsorption caused by the inflammation.

Another lipid-associated change is in LDL, HDL and VLDL.
Patients with Crohn’s disease have lower fecal cholesterol levels
compared to healthy controls [45], as well as lower serum LDL and
HDL levels, more pronounced in CD. The reason for this is that pro-
inflammatory cytokines such as TNF-alpha, IL-1 and INF-gamma
inhibit the expression of lipoprotein lipase [5,56,57]. Closely related
to lipid metabolism are prostaglandins, which are produved from
arachidonic acid. Low levels of prostaglandins have been found in
CD, with the exception of PGE2, which activates Th17 lymphocytes,
which in turn activate dendritic cells and increase IL-23 production
[5,58]. Bile acids —another altered metabolite, mainly secondary
bile acids deoxycholic acid and lithocholic acid, are significantly
reduced in UC patients. They suppress inflammation by inhibiting
the synthesis of proinflammatory mediators and suppressing
intestinal epithelial apoptosis [7,59,60]. They also exert an
antimicrobial effect, and their absence contributes to dysbiosis
[16,61].

Alteration in the Tricarboxylic Acid (TCA) Cycle
and its Metabolites

Tricarboxylic acid (TCA) cycle, also known as the Krebs
cycle, is the final process in the oxidation of proteins, lipids, and
carbohydrates. A significant reduction of intermediate metabolites
such as citrate, aconitate, alpha-ketoglutarate, succinate, fumarate
and malate were found in the serum of CD patients compared to
controls and UC patients. Moreover, the metabolite reported in
lowest levels in CD patients (11-fold compared to controls and 18-
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fold compared to CD patients) is beta-hydroxybutyrate, which is
synthesized from acetyl-CoA [62]. In addition to serum, low levels
of succinate and citrate are also observed in urine. [33,37,63].
Alonso, et al. [64] even suggested citrate as a potential biomarker,
mainly in CD patients, as its levels correlate with disease activity
[5,65].

Alterations in Other Metabolites

Alterations in essential amino acid levels have also been
reported. An example of this is the altered level of tryptophan,
which was elevated in the feces of patients with IBD compared to
controls [5,66]. On the other hand, Nikolaus, et al. found low levels
of this amino acid in the serum of patients with IBD [67]. In some
studies, administration of tryptophan and its metabolites (indole-
3-aldehyde, indole-3-propionic acid, and indole-3-acetic acid)
suppresses colonic inflammation, protects epithelial integrity, and

reverses colitis-associated microbial dysbiosis [7,68-71].

Phenylalanine, another amino acid with anti-inflammatory
effects (suppresses TNF production) [72], was increased in serum
and decreased in feces, reported by two different authors [40,43].
High levels of taurine, glycine, lysine, and alanine were also found
in feces. This is most likely due to impaired epithelial absorption
due to intestinal inflammation, but could also be due to dysbiosis,
as some bacteria use amino acids for their metabolism [16,73,74].
An increase in some polyamines - putrescine and cadaverine - was
observed in the feces of patients with CD and UC, which suggests
that these polyamines have a negative effect on disease [7,75]. An
increase in fecal and serum taurine levels has also been reported
[7,34,40,46, 76-79].

Also of interest is the co-metabolite of mixed origin (mammalian
and microbial) hippurate, or N-benzoylglycine. It is produced by
bacterial fermentation of aromatic compounds introduced from the
diet (aromatic amino acids, polyphenols, and purines) to benzoic
acid with subsequent conjugation with glycine in the liver. It was
found to be significantly lower in the urine of patients with IBD
compared to controls. Like it is formate, which is also in low amounts
[16,32,33,35,37,80]. This suggests its potential use as a biomarker.
A similar co-metabolite reported in low concentrations in urine
is p-cresol sulfate, which is derived from bacterial metabolism of
tyrosine, primarily by Clostridia spp [32,44, 81].

Histidine metabolism is also altered. It is converted by
microbiota into ergothioneine. This metabolite has antioxidant
and neuroprotective properties. It was also found in low amounts
reported by Lai, et al. from 2019. It is assumed that this is due to the
damage or lack of'its transporter (OCTN1), which is expressed only
in the small intestine, which suggests its use for the differentiation
of CD from UC [5,43,82-85].
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Conclusion

Based on all the above, a few metabolites in patients with IBD
are altered to varying degrees. There is data for some of them that
have the potential to be used as biological markers to differentiate
Crohn’s disease from ulcerative colitis, and some correlate with
the activity of the inflammatory process. Commensal microbiota
and their metabolites are candidates to produce new probiotics
containing F prausnitzii, Akkermansia muciniphilia, Bacteoides
fragilis due to their butyrate-producing properties. However,
more data is needed for these findings to be standardized and
implemented in routine clinical practice.
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