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Abstract

In clinical trials, the conventional power calculation approach for determining the required sample size cannot control the
inter-subject variability. Consequently, it may underestimate the treatment effect and/or overestimate the population variance
for a specific subpopulation such as the enriched population in precision medicine clinical trials. In this article, we propose an
optimization power calculation approach for computing the required sample size for precision medicine clinical trials by controlling
variability and maintaining the desired treatment at the same time. The proposed power calculation approach cannot only provide
a smaller and more precise sample size for achieving the primary objective of the intended trial but also have a sketched idea
regarding how many subjects will be accrued for achieving the secondary objectives.
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Introduction

Precision medicine is an innovative model tailoring the
target population of the treatment/drug by considering patient
characteristics, such as genetic makeup, health status, environment,
and lifestyles, which aims to maximize the quality of healthcare for
individual patients [1-3]. Due to the complexity of customizing
healthcare or treatment, precision medicine is a highly sophisticated
process rather than simply stratifying the target population into
several subgroups. Koenig et al. [4] have divided the precision
medicine model into three tracks: preprocessing data, validating
diagnostic and prognostic models, and developing and validating
specific models to conduct analysis. Nowadays, precision medicine
has been widely used in different clinical specialty areas, including
oncology, respiratory diseases, and cardiovascular diseases [5-7]

In the complex process of precision medicine, one important
phase is to identify the subpopulation who may have more benefit
from using the test treatment. One commonly used tool in this
identification phase is the biomarker, which is usually a short-
term indicative endpoint for the long-term primary outcome [1]
In precision medicine, researchers tend to be more interested in

the performance of the treatment under investigation for a specific
subpopulation, which makes the conventional randomized clinical
trials (RCTs) not work well. In other words, traditional RCTs only
assess the average treatment effect in the overall population,
whereas precision medicine trials tend to be more interested in a
specific subpopulation.

Some biomarker-drive RCT designs have been proposed for
precision medicine trials. Three major types of biomarker-RCT
designs are biomarker-stratified designs, enrichment designs, and
biomarker-strategy designs [8]. Biomarker-stratified designs are
commonly used when researchers have limited evidence about
which subpopulation may prefer the test treatment; enrichment
designs can be used when we have sufficient evidence to determine
subpopulation which has more benefit; and biomarker-strategy
designs are less favorable since it is statistically problematic
[8]. Additionally, some advanced clinical trial designs or design
selection criteria for precision medicine have been proposed.
Kappelmann et al. [9]proposed the nested-precision RCT (npRCT)
to combine traditional RCT with precision RCT with precision
RCT. Takazawa and Morita [10] provided optimal decision criteria.
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provided optimal decision criteria to select the optimal study design
for phase III biomarker-drive trials by optimizing the expected net
present value and the probability of success.

In typical RCTs, the power analysis for sample size calculation
contains four steps: (i) formulate the hypotheses, (ii) derive the test
statistic under the null hypothesis, (iii) evaluate power function
under the alternative hypothesis, and (iv) for a fixed significance
level and desired power level, compute the required sample size. For
precision medicine, this typical approach based on power analysis
may not be feasible since precision medicine tends to additionally
focus on minimizing inter-subject variability [1]. In other words,
the conventional approach is less applicable since it cannot control
the inter-subject variability. The domain knowledge used for power
calculation may underestimate the treatment effect or overestimate
the population variance for a specific subpopulation such as an

enriched subpopulation for development of precision medicine.

In this article, our goal is to propose an optimization power
calculation approach for precision medicine clinical trials by
controlling the intra-subject variability and maintaining desired
treatment effect at the same time. In the next section, the power
calculation process in enrichment design is illustrated. The
proposed optimization approach and its comparison with the
typical power calculation approach are discussed in Section 3.

Section 4 provides some concluding remarks.
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Power Calculation

As
statistically problematic since a certain proportion of the study

mentioned earlier, biomarker-strategy designs are
population (a proportion of the biomarker-directed arm and the
control arm) will receive the same treatment [8]. In this way, we
would underestimate the treatment effect, and the statistical
power would decrease. Freidlin et al. have also also proved that
the biomarker-stratified design requires a higher cost and longer
follow-up period. Thus, instead of using one specific typical type of
trial, many scholars chose to combine some of the strategies with
other techniques to generate innovative clinical trial designs, such
as enriched biomarker stratified designs and auxiliary-variable-

enriched biomarker stratified designs [11].

Forillustration purposes, this paper will focus on the enrichment
design and assume that there is enough evidence suggesting that
the treatment may have greater benefit in biomarker-positive
patients. The enrichment designs considered in this section are
the simplest scenario, as shown in Figure 1. In design (A), both
randomization and statistical analysis will be applied to biomarker-
positive subjects, and the study object is to investigate the
performance of the test treatment on biomarker-positive patients
only. In design (B), researchers tend to set the primary object the
same as design (A), however, the secondary objective is to test the
drug performance on the overall population [12].

(A)
Biomarker positive Randomized to Tor C
Eligible Assess
population biomarker
Biomarker negative Off study
(B)
Blomarker positive * Randomized to Tor C
Eligible Assess
population biomarker
Biomarker negative Randomized to Tor C
Figure 1: Enrichment design. Design (A) conducts randomization and analysis on biomarker-positive patients only; whereas, in design (B),
study population will be divided into biomarker-positive and biomarker-negative subpopulation, and randomization will be applied to both
biomarker-positive and biomarker-negative patients. In design (B), the primary objective is for the biomarker-positive population.
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Let Y, denote the response of patients assigned to the treatment
group and Y, denote the response of patients assigned to the control
group. Let X, and X denote biomarker-positive and biomarker-
negative patients in treatment group, and X,. and X,  denote
biomarker-positive and biomarker-negative in control group.
Assume the responses of both group follows normal distribution.
Let W denote the biomarker indicator, and # ~ Bernoulli(p) , where p
may be obtained from previous literature. Then, we have Y =X, and
Y =X, indesign (A), and y, -wx,, +(1-w)x,, and y_—pwx, . +(1-W) X,
in design (B).

In design (A), assume the primary object is to test for efficacy
on biomarker-positive patients using a non-inferiority test. Let § be
the non-inferiority margin, 6 be the treatment difference, and O, 12
be the population variance (assume the variances are the same for
treatment and control groups). The hypotheses are

H,:0<-8vs.H, :0>-6 (1)

Using two-sample z test, the sample size of the treatment group
can be written as

2
_ (zk%-%—zl_ﬁ) (1 +%) o} (2)
N )
where z,is the q% quantile of standard normal distribution,
the allocation ratio is k:1. The sample size of the control group is

n=kn,.

Assume the primary object for design (B) is the same as the one
for design (A). The power calculation should be derived based on
the testing efficacy for biomarker-positive patients. However, the
number of biomarker negative patients should also be considered
since the secondary objective is to evaluate the treatment
performance in the overall population. Using the reduced optimal
enrichmentratio generated by Yangetal.,, (2015) [12], the treatment
and control arm sample sizes for biomarker negative patients are
- (1 —p)oy
B poy
Thus, the total sample size of treatment and control arms in

mry ny and mg = kmr. (3)

design (B) are n,+m, and n +m..

A Proposed Optimization Power Calculation
Approach

From the power calculation in Equation (2) and (3), the sample
size of each arm can be writtenas a function: r(«.5.%. 6.6, for design
(A) and f(«,5,k,6,8,01,02,p) for design (B). Different from traditional
power calculation process, precision medicine may have some
extra constrains on the biomarker-positive patients’ treatment
difference 8 and variance &?. Typically, the domain knowledge, i.e.,
expected treatment difference and population variance, obtained
from previous literature used to conduct power calculation may
from studies powered on overall population efficacy. It is possible
that the treatment difference is underestimated, and the variance
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is overestimated. In other words, we may believe that in precision
medicine, the biomarker-positive patient population may have
smaller variance and better efficacy. Thus, we may treat power

calculation as an optimization problem.

Use design (B) as an example, the objective function and
constrains of the optimization problem are

min n, + m,
Bo<0<(1+21) %6,

. (1-2)xe <ol <a?
subject to ,

012 = 0'22 (4)

4 2
g0 >0

where 7; +m; can be obtained by Equation (2) and (3), 6,
and g are the expected treatment difference and population
variance, 4 and 4, are the factors used to constrain true treatment
effect and variance 4,4, > 0. 6, < @ represents that the precision

medicine is expected to have better efficacy. 0'12 < o—g and (712 < 522
represent that the precision medicine has a better control on intra-

subject variability. From Equation (2), we know that gis in the

numerator, and 6 is in the denominator. Theoretically, without

using the constrain factors, 0'12 may take an extremely small value,
or 6 may take an extremely large value to minimize the objective
function. In either case, the sample size of each arm may go close
to zero. In practice, though precision medicine can help increase
the benefit and control population variance, it is unlikely that
precision medicine will make extreme differences. In other words,
it is reasonable to provide a limit for the benefit of limiting the
treatment to biomarker-positive patients.

Next, we evaluate the proposed optimization approach by
comparing it with the typical approach in terms of the sample size
of biomarker-positive treatment arm. Assume the significance level
is two-sided a=0.05, desired statistical power is 1-=80%, the
allocation ratio is 1:1, and the prevalence of biomarker-positive
in the target population is p=0.10. Let the non-inferiority margin

(&) be 0.1, 0.2 and 0.3, the treatment difference from previous
literature (6,) be 0.2, 0.4 and 0.6, the population variance from

previous literature (o7) be 1, 2 and 3. The sample sizes computed
using traditional approach and the proposed optimization approach
are shown in Table 1.

From the computation results, solutions to the optimization
problem shown in Equation (4) are greatly affected by the
constrain ratios on treatment difference and variance, i.e., 4,and 4

Specifically, the optimal solutions are on the boundaries of the
constrain functions. If the upper bound of g tends to be higher,
o tends to be larger, and the sample size using the optimization
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approach tends to be smaller; if the lower bound of O‘,2 tends to
be higher, srtends to be larger, and the sample size using the

optimization approach tends to be larger.

As shown in Table 1, we find that the typical approach of power
calculation always provides a larger sample size compared with
the optimization approach. Since one benefit of using precision

medicine is to control the within-group variance. Using the typical
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power calculation approach, we may collect more patients than we
truly need. By using the optimization approach, researchers will
be able to alleviate the sample size requirement for the primary
objective and have a sketched idea about how many patients will
be accrued for the secondary objective (evaluating treatment
performance on overall patients). And the sample size difference
between using typical approach and optimization approach will be
larger if o, increases or 6, decreases.

Table 1: Sample size comparison.
Typical approach Optimization approach
o 6, o, n, o ol oy n, n. +m,
WA =4=20%.
0.1 0.2 1 175 0.24 0.8 0.8 109 1087
2 349 0.24 1.6 1.6 218 2173
3 524 0.24 2.4 2.4 326 3260
0.4 1 63 0.48 0.8 0.8 38 374
2 126 0.48 1.6 1.6 75 747
3 189 0.48 2.4 2.4 112 1120
0.6 1 33 0.72 0.8 0.8 19 187
2 65 0.72 1.6 1.6 38 374
3 97 0.72 2.4 2.4 57 561
0.2 0.2 1 99 0.24 0.8 0.8 65 649
2 197 0.24 1.6 1.6 130 1298
3 295 0.24 2.4 2.4 195 1947
0.4 1 44 0.48 0.8 0.8 28 272
2 88 0.48 1.6 1.6 55 544
3 131 0.48 2.4 2.4 82 815
0.6 1 25 0.72 0.8 0.8 15 149
2 50 0.72 1.6 1.6 30 297
3 74 0.72 2.4 2.4 45 446
0.3 0.2 1 63 0.24 0.8 0.8 44 431
2 126 0.24 1.6 1.6 87 862
3 189 0.24 2.4 2.4 130 1292
0.4 1 33 0.48 0.8 0.8 21 207
2 65 0.48 1.6 1.6 42 413
3 97 0.48 2.4 2.4 62 620
0.6 1 20 0.72 0.8 0.8 13 121
2 39 0.72 1.6 1.6 25 242
3 59 0.72 2.4 2.4 37 363
®) 4, =20%, 4, =10%.
0.1 0.2 1 175 0.24 0.9 0.9 123 1223
2 349 0.24 1.8 1.8 245 2445

American Journal of Biomedical Science & Research



Am ] Biomed Sci & Res

Copy@ Peijin Wang

3 524 0.24 2.7 2.7 367 3667
0.4 1 63 0.48 0.9 0.9 42 420

2 126 0.48 18 1.8 84 840

3 189 0.48 2.7 2.7 126 1260

0.6 1 33 0.72 0.9 0.9 22 211

2 65 0.72 18 1.8 43 421

3 97 0.72 2.7 2.7 64 631

0.2 0.2 1 99 0.24 0.9 0.9 73 730
2 197 0.24 18 1.8 146 1460

3 295 0.24 2.7 2.7 219 2190

0.4 1 44 0.48 0.9 0.9 31 306

2 88 0.48 18 1.8 62 612

3 131 0.48 2.7 2.7 92 917

0.6 1 25 0.72 0.9 0.9 17 167

2 50 0.72 18 1.8 34 334

3 74 0.72 2.7 2.7 51 501

0.3 0.2 1 63 0.24 0.9 0.9 49 485
2 126 0.24 18 1.8 97 969

3 189 0.24 2.7 2.7 146 1454

0.4 1 33 0.48 0.9 0.9 24 233

2 65 0.48 18 1.8 47 465

3 97 0.48 2.7 2.7 70 697

0.6 1 20 0.72 0.9 0.9 14 136

2 39 0.72 18 1.8 28 272

3 59 0.72 2.7 2.7 41 408

© A4, =10%,4, =20%.

0.1 0.2 1 175 0.22 0.8 0.8 123 1227
2 349 0.22 1.6 1.6 246 2453

3 524 0.22 2.4 2.4 368 3680

0.4 1 63 0.44 0.8 0.8 44 431

2 126 0.44 1.6 1.6 87 862

3 189 0.44 2.4 2.4 130 1292

0.6 1 33 0.66 0.8 0.8 22 218

2 65 0.66 1.6 1.6 44 435

3 97 0.66 2.4 2.4 66 653

0.2 0.2 1 99 0.22 0.8 0.8 72 712
2 197 0.22 1.6 1.6 143 1424

3 295 0.22 2.4 2.4 214 2136

0.4 1 44 0.44 0.8 0.8 31 307

2 88 0.44 1.6 1.6 62 614

3 131 0.44 2.4 2.4 92 920

0.6 1 25 0.66 0.8 0.8 17 170

2 50 0.66 1.6 1.6 34 340

3 74 0.66 2.4 2.4 51 510
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0.3 0.2 1 63 0.22 0.8 0.8 47 465
2 126 0.22 1.6 1.6 93 929

3 189 0.22 2.4 2.4 140 1394

0.4 1 33 0.44 0.8 0.8 23 230

2 65 0.44 1.6 1.6 46 459

3 97 0.44 2.4 2.4 69 688

0.6 1 20 0.66 0.8 0.8 14 137

2 39 0.66 1.6 1.6 28 273

3 59 0.66 2.4 2.4 41 409

Note: The parameter settings are a=0.05, 1-8=80%, k=1, p=0.10. 6",
0,2* and 0,7 are the solution to the optimization problem shown in

Equation (4).

Additionally, o7"and o7

ideally the variances of biomarker-positive and negative patients

“are the same in all settings. Though

may be different, a smaller 52will lead to a smaller sample size.
To make the optimal function closer to reality, we may choose to
give biomarker-positive and negative treatment group sample sizes
different factors, i.e., the objective function could be
min g4 ny + fymy (5)
If M, > HU,, it suggests that we have a higher requirement
on minimizing the sample size for biomarker-positive patients;
otherwise, we have a higher requirement on minimizing the
biomarker negative patient sample size. Since the selection of £
and 4, relies heavily on the specific information about the trial, the
numerical analysis using Equation (5) will be considered.

Concluding Remarks

With the great enhancement of genome sequencing techniques,
diagnostic sensitivity and precise therapeutic targeting, precision
medicine has become a very hot topic, which aims to evaluate
the performance of the test treatment or drug on a specific
subpopulation. In precision medicine, conventional two-arm
parallel design becomes less favorable, some new designs, such as
biomarker-stratified design, enrichment design, and other adaptive
designs have been proposed to investigate the performance of
precision medicine. Different from typical medicine, precision
medicine tends to increase the treatment efficacy and control the
inter-subject variability at the same time. Thus, the typical power
analysis for the sample size calculation approach may be not
feasible since in precision medicine, the domain knowledge used
to conduct power calculation tends to be the treatment effect is
larger than a threshold and the population variance is smaller than
a threshold. Therefore, it is possible to treat power calculation for

precision medicine clinical trials as an optimization problem.

Using the proposed optimization approach, the sample size can

be obtained while controlling the treatment difference as well as
the population variances. In the numerical analysis, we consider
the enrichment design (B) shown in Figure 1, where the primary
objective is to test for efficacy in biomarker-positive patients, and
the secondary objective is to test for efficacy in overall patients.
Because the information aboutthe precision medicine used in power
calculation is more precise, the proposed optimization approach
tends to give a smaller required sample size compared with the
typical power calculation approach. The difference in sample sizes
computed using these two approaches tends to be greater when
the treatment difference decreases or the population increases. We
also find that the solutions to the optimization problem are always
on the boundaries, suggesting that the selection of the constrain
factors in Equation (4) is essential. Additionally, the influence of the

constrain factors on the value of the objective function is not great.

By using the proposed optimization approach to conduct power
calculation, researchers will be able to obtain a smaller and more
precise sample size to conduct statistical analysis for precision
medicine clinical trials. And they could also have a sketched
idea about how many patients will be accrued for the secondary
objective. The objective function we used is the sample size for
treatment group patients, i.e., the sum of biomarker-positive and
biomarker-negative sample sizes. In practice, researchers may have
different priorities on sample sizes for primary and secondary
objectives. Specifically, researchers may have a greater desire on
minimizing the sample size for the primary objective. In this way,
the optimal objective function will be the one shown in Equation
(5). Since it may require more domain knowledge and beyond the
scope of this paper, we have not discussed it in detail. The ultimate
goal of this paper is to propose an innovative power calculation
approach for precision medicine using the optimization approach,
which may make better use of the information we have on the test
treatment aiming to precisely compute the required sample size.
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