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Introduction
Precision medicine is an innovative model tailoring the 

target population of the treatment/drug by considering patient 
characteristics, such as genetic makeup, health status, environment, 
and lifestyles, which aims to maximize the quality of healthcare for 
individual patients [1-3]. Due to the complexity of customizing 
healthcare or treatment, precision medicine is a highly sophisticated 
process rather than simply stratifying the target population into 
several subgroups. Koenig et al. [4] have divided the precision 
medicine model into three tracks: preprocessing data, validating 
diagnostic and prognostic models, and developing and validating 
specific models to conduct analysis. Nowadays, precision medicine 
has been widely used in different clinical specialty areas, including 
oncology, respiratory diseases, and cardiovascular diseases [5-7]

In the complex process of precision medicine, one important 
phase is to identify the subpopulation who may have more benefit 
from using the test treatment. One commonly used tool in this 
identification phase is the biomarker, which is usually a short-
term indicative endpoint for the long-term primary outcome [1] 
In precision medicine, researchers tend to be more interested in  

 
the performance of the treatment under investigation for a specific 
subpopulation, which makes the conventional randomized clinical 
trials (RCTs) not work well. In other words, traditional RCTs only 
assess the average treatment effect in the overall population, 
whereas precision medicine trials tend to be more interested in a 
specific subpopulation. 

Some biomarker-drive RCT designs have been proposed for 
precision medicine trials. Three major types of biomarker-RCT 
designs are biomarker-stratified designs, enrichment designs, and 
biomarker-strategy designs [8]. Biomarker-stratified designs are 
commonly used when researchers have limited evidence about 
which subpopulation may prefer the test treatment; enrichment 
designs can be used when we have sufficient evidence to determine 
subpopulation which has more benefit; and biomarker-strategy 
designs are less favorable since it is statistically problematic 
[8]. Additionally, some advanced clinical trial designs or design 
selection criteria for precision medicine have been proposed. 
Kappelmann et al. [9]proposed the nested-precision RCT (npRCT) 
to combine traditional RCT with precision RCT with precision 
RCT. Takazawa and Morita [10] provided optimal decision criteria. 
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provided optimal decision criteria to select the optimal study design 
for phase III biomarker-drive trials by optimizing the expected net 
present value and the probability of success.

In typical RCTs, the power analysis for sample size calculation 
contains four steps: (i) formulate the hypotheses, (ii) derive the test 
statistic under the null hypothesis, (iii) evaluate power function 
under the alternative hypothesis, and (iv) for a fixed significance 
level and desired power level, compute the required sample size. For 
precision medicine, this typical approach based on power analysis 
may not be feasible since precision medicine tends to additionally 
focus on minimizing inter-subject variability [1]. In other words, 
the conventional approach is less applicable since it cannot control 
the inter-subject variability. The domain knowledge used for power 
calculation may underestimate the treatment effect or overestimate 
the population variance for a specific subpopulation such as an 
enriched subpopulation for development of precision medicine.

In this article, our goal is to propose an optimization power 
calculation approach for precision medicine clinical trials by 
controlling the intra-subject variability and maintaining desired 
treatment effect at the same time. In the next section, the power 
calculation process in enrichment design is illustrated. The 
proposed optimization approach and its comparison with the 
typical power calculation approach are discussed in Section 3. 
Section 4 provides some concluding remarks.

Power Calculation
As mentioned earlier, biomarker-strategy designs are 

statistically problematic since a certain proportion of the study 
population (a proportion of the biomarker-directed arm and the 
control arm) will receive the same treatment [8]. In this way, we 
would underestimate the treatment effect, and the statistical 
power would decrease. Freidlin et al. have also also proved that 
the biomarker-stratified design requires a higher cost and longer 
follow-up period. Thus, instead of using one specific typical type of 
trial, many scholars chose to combine some of the strategies with 
other techniques to generate innovative clinical trial designs, such 
as enriched biomarker stratified designs and auxiliary-variable-
enriched biomarker stratified designs [11].

For illustration purposes, this paper will focus on the enrichment 
design and assume that there is enough evidence suggesting that 
the treatment may have greater benefit in biomarker-positive 
patients. The enrichment designs considered in this section are 
the simplest scenario, as shown in Figure 1. In design (A), both 
randomization and statistical analysis will be applied to biomarker-
positive subjects, and the study object is to investigate the 
performance of the test treatment on biomarker-positive patients 
only. In design (B), researchers tend to set the primary object the 
same as design (A), however, the secondary objective is to test the 
drug performance on the overall population [12].

Figure 1:  Enrichment design. Design (A) conducts randomization and analysis on biomarker-positive patients only; whereas, in design (B), 
study population will be divided into biomarker-positive and biomarker-negative subpopulation, and randomization will be applied to both 
biomarker-positive and biomarker-negative patients. In design (B), the primary objective is for the biomarker-positive population. 
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Let YT denote the response of patients assigned to the treatment 
group and YC denote the response of patients assigned to the control 
group. Let X1T and X0T denote biomarker-positive and biomarker-
negative patients in treatment group, and X1C and X0C denote 
biomarker-positive and biomarker-negative in control group. 
Assume the responses of both group follows normal distribution. 
Let W denote the biomarker indicator, and , where p 
may be obtained from previous literature. Then, we have YT=X1T and 
YC=X1C in design (A), and ( )1 01T T TY WX W X= + −  and ( )1 01C C CY WX W X= + −  
in design (B).

In design (A), assume the primary object is to test for efficacy 
on biomarker-positive patients using a non-inferiority test. Let δ be 
the non-inferiority margin, θ be the treatment difference, and 2

1σ  
be the population variance (assume the variances are the same for 
treatment and control groups). The hypotheses are

0 : . :AH vs Hθ δ θ δ≤ − > −                                 (1)

Using two-sample z test, the sample size of the treatment group 
can be written as

                                             (2)

where zq is the q% quantile of standard normal distribution, 
the allocation ratio is k:1. The sample size of the control group is 
nC=knT.

Assume the primary object for design (B) is the same as the one 
for design (A). The power calculation should be derived based on 
the testing efficacy for biomarker-positive patients. However, the 
number of biomarker negative patients should also be considered 
since the secondary objective is to evaluate the treatment 
performance in the overall population. Using the reduced optimal 
enrichment ratio generated by Yang et al., (2015) [12], the treatment 
and control arm sample sizes for biomarker negative patients are

                            (3)

Thus, the total sample size of treatment and control arms in 
design (B) are nT+mT  and nC+mC.

A Proposed Optimization Power Calculation 
Approach

From the power calculation in Equation (2) and (3), the sample 
size of each arm can be written as a function: for design 
(A) and  for design (B). Different from traditional 
power calculation process, precision medicine may have some 
extra constrains on the biomarker-positive patients’ treatment 
difference θ and variance . Typically, the domain knowledge, i.e., 
expected treatment difference and population variance, obtained 
from previous literature used to conduct power calculation may 
from studies powered on overall population efficacy. It is possible 
that the treatment difference is underestimated, and the variance 

is overestimated. In other words, we may believe that in precision 
medicine, the biomarker-positive patient population may have 
smaller variance and better efficacy. Thus, we may treat power 
calculation as an optimization problem.

Use design (B) as an example, the objective function and 
constrains of the optimization problem are

min T Tn m+

                                                                                        (4)

where T Tn m+ can be obtained by Equation (2) and (3), 0θ

and 2
0σ are the expected treatment difference and population 

variance, 1λ and 2λ  are the factors used to constrain true treatment 

effect and variance  1 2, 0λ λ > . 0θ θ≤ represents that the precision 

medicine is expected to have better efficacy. 2 2
1 0σ σ≤  and 2 2

1 2σ σ≤  
represent that the precision medicine has a better control on intra-

subject variability. From Equation (2), we know that 2
1σ is in the 

numerator, and θ is in the denominator. Theoretically, without 

using the constrain factors, 2
1σ  may take an extremely small value, 

or θ may take an extremely large value to minimize the objective 
function. In either case, the sample size of each arm may go close 
to zero. In practice, though precision medicine can help increase 
the benefit and control population variance, it is unlikely that 
precision medicine will make extreme differences. In other words, 
it is reasonable to provide a limit for the benefit of limiting the 
treatment to biomarker-positive patients.

Next, we evaluate the proposed optimization approach by 
comparing it with the typical approach in terms of the sample size 
of biomarker-positive treatment arm. Assume the significance level 
is two-sided α=0.05, desired statistical power is 1-β=80%, the 
allocation ratio is 1:1, and the prevalence of biomarker-positive 
in the target population is p=0.10. Let the non-inferiority margin 

(δ ) be 0.1, 0.2 and 0.3, the treatment difference from previous 

literature ( 0θ )  be 0.2, 0.4 and 0.6, the population variance from 

previous literature ( 2
0σ ) be 1, 2 and 3. The sample sizes computed 

using traditional approach and the proposed optimization approach 
are shown in Table 1.

From the computation results, solutions to the optimization 
problem shown in Equation (4) are greatly affected by the 
constrain ratios on treatment difference and variance, i.e., 1λ and 2λ

.  Specifically, the optimal solutions are on the boundaries of the 
constrain functions. If the upper bound of θ  tends to be higher, 

*θ tends to be larger, and the sample size using the optimization 
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approach tends to be smaller; if the lower bound of 2
1σ  tends to 

be higher, *
1σ tends to be larger, and the sample size using the 

optimization approach tends to be larger.

As shown in Table 1, we find that the typical approach of power 
calculation always provides a larger sample size compared with 
the optimization approach. Since one benefit of using precision 
medicine is to control the within-group variance. Using the typical 

power calculation approach, we may collect more patients than we 
truly need. By using the optimization approach, researchers will 
be able to alleviate the sample size requirement for the primary 
objective and have a sketched idea about how many patients will 
be accrued for the secondary objective (evaluating treatment 
performance on overall patients). And the sample size difference 
between using typical approach and optimization approach will be 
larger if 2

0σ increases or 0θ decreases.

Table 1: Sample size comparison.

      Typical approach Optimization approach

δ
0θ

2
0σ Tn *θ 2*

1σ
2*
2σ Tn T Tn m+

(A) 1 2 20%λ λ= = .

0.1 0.2 1 175 0.24 0.8 0.8 109 1087

    2 349 0.24 1.6 1.6 218 2173

    3 524 0.24 2.4 2.4 326 3260

  0.4 1 63 0.48 0.8 0.8 38 374

    2 126 0.48 1.6 1.6 75 747

    3 189 0.48 2.4 2.4 112 1120

  0.6 1 33 0.72 0.8 0.8 19 187

    2 65 0.72 1.6 1.6 38 374

    3 97 0.72 2.4 2.4 57 561

0.2 0.2 1 99 0.24 0.8 0.8 65 649

    2 197 0.24 1.6 1.6 130 1298

    3 295 0.24 2.4 2.4 195 1947

  0.4 1 44 0.48 0.8 0.8 28 272

    2 88 0.48 1.6 1.6 55 544

    3 131 0.48 2.4 2.4 82 815

  0.6 1 25 0.72 0.8 0.8 15 149

    2 50 0.72 1.6 1.6 30 297

    3 74 0.72 2.4 2.4 45 446

0.3 0.2 1 63 0.24 0.8 0.8 44 431

    2 126 0.24 1.6 1.6 87 862

    3 189 0.24 2.4 2.4 130 1292

  0.4 1 33 0.48 0.8 0.8 21 207

    2 65 0.48 1.6 1.6 42 413

    3 97 0.48 2.4 2.4 62 620

  0.6 1 20 0.72 0.8 0.8 13 121

    2 39 0.72 1.6 1.6 25 242

    3 59 0.72 2.4 2.4 37 363

(B) 1 220%, 10%λ λ= = .

0.1 0.2 1 175 0.24 0.9 0.9 123 1223

    2 349 0.24 1.8 1.8 245 2445
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    3 524 0.24 2.7 2.7 367 3667

  0.4 1 63 0.48 0.9 0.9 42 420

    2 126 0.48 1.8 1.8 84 840

    3 189 0.48 2.7 2.7 126 1260

  0.6 1 33 0.72 0.9 0.9 22 211

    2 65 0.72 1.8 1.8 43 421

    3 97 0.72 2.7 2.7 64 631

0.2 0.2 1 99 0.24 0.9 0.9 73 730

    2 197 0.24 1.8 1.8 146 1460

    3 295 0.24 2.7 2.7 219 2190

  0.4 1 44 0.48 0.9 0.9 31 306

    2 88 0.48 1.8 1.8 62 612

    3 131 0.48 2.7 2.7 92 917

  0.6 1 25 0.72 0.9 0.9 17 167

    2 50 0.72 1.8 1.8 34 334

    3 74 0.72 2.7 2.7 51 501

0.3 0.2 1 63 0.24 0.9 0.9 49 485

    2 126 0.24 1.8 1.8 97 969

    3 189 0.24 2.7 2.7 146 1454

  0.4 1 33 0.48 0.9 0.9 24 233

    2 65 0.48 1.8 1.8 47 465

    3 97 0.48 2.7 2.7 70 697

  0.6 1 20 0.72 0.9 0.9 14 136

    2 39 0.72 1.8 1.8 28 272

    3 59 0.72 2.7 2.7 41 408

 (C) 1 210%, 20%λ λ= = .

0.1 0.2 1 175 0.22 0.8 0.8 123 1227

    2 349 0.22 1.6 1.6 246 2453

    3 524 0.22 2.4 2.4 368 3680

  0.4 1 63 0.44 0.8 0.8 44 431

    2 126 0.44 1.6 1.6 87 862

    3 189 0.44 2.4 2.4 130 1292

  0.6 1 33 0.66 0.8 0.8 22 218

    2 65 0.66 1.6 1.6 44 435

    3 97 0.66 2.4 2.4 66 653

0.2 0.2 1 99 0.22 0.8 0.8 72 712

    2 197 0.22 1.6 1.6 143 1424

    3 295 0.22 2.4 2.4 214 2136

  0.4 1 44 0.44 0.8 0.8 31 307

    2 88 0.44 1.6 1.6 62 614

    3 131 0.44 2.4 2.4 92 920

  0.6 1 25 0.66 0.8 0.8 17 170

    2 50 0.66 1.6 1.6 34 340

    3 74 0.66 2.4 2.4 51 510
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0.3 0.2 1 63 0.22 0.8 0.8 47 465

    2 126 0.22 1.6 1.6 93 929

    3 189 0.22 2.4 2.4 140 1394

  0.4 1 33 0.44 0.8 0.8 23 230

    2 65 0.44 1.6 1.6 46 459

    3 97 0.44 2.4 2.4 69 688

  0.6 1 20 0.66 0.8 0.8 14 137

    2 39 0.66 1.6 1.6 28 273

    3 59 0.66 2.4 2.4 41 409

Note: The parameter settings are α=0.05, 1-β=80%, k=1, p=0.10. θ*, 
σ1

2* and σ2
2* are the solution to the optimization problem shown in 

Equation (4).

Additionally, 2
1σ
∗ and 2*

2σ are the same in all settings. Though 
ideally the variances of biomarker-positive and negative patients 
may be different, a smaller 2

2σ will lead to a smaller sample size. 
To make the optimal function closer to reality, we may choose to 
give biomarker-positive and negative treatment group sample sizes 
different factors, i.e., the objective function could be

1 2min T Tn mµ µ+                                                                                                                                    (5)

If  1 2µ µ> , it suggests that we have a higher requirement 
on minimizing the sample size for biomarker-positive patients; 
otherwise, we have a higher requirement on minimizing the 
biomarker negative patient sample size. Since the selection of 1µ  
and 2µ relies heavily on the specific information about the trial, the 
numerical analysis using Equation (5) will be considered.

Concluding Remarks
With the great enhancement of genome sequencing techniques, 

diagnostic sensitivity and precise therapeutic targeting, precision 
medicine has become a very hot topic, which aims to evaluate 
the performance of the test treatment or drug on a specific 
subpopulation. In precision medicine, conventional two-arm 
parallel design becomes less favorable, some new designs, such as 
biomarker-stratified design, enrichment design, and other adaptive 
designs have been proposed to investigate the performance of 
precision medicine. Different from typical medicine, precision 
medicine tends to increase the treatment efficacy and control the 
inter-subject variability at the same time. Thus, the typical power 
analysis for the sample size calculation approach may be not 
feasible since in precision medicine, the domain knowledge used 
to conduct power calculation tends to be the treatment effect is 
larger than a threshold and the population variance is smaller than 
a threshold. Therefore, it is possible to treat power calculation for 
precision medicine clinical trials as an optimization problem.

Using the proposed optimization approach, the sample size can 

be obtained while controlling the treatment difference as well as 
the population variances. In the numerical analysis, we consider 
the enrichment design (B) shown in Figure 1, where the primary 
objective is to test for efficacy in biomarker-positive patients, and 
the secondary objective is to test for efficacy in overall patients. 
Because the information about the precision medicine used in power 
calculation is more precise, the proposed optimization approach 
tends to give a smaller required sample size compared with the 
typical power calculation approach. The difference in sample sizes 
computed using these two approaches tends to be greater when 
the treatment difference decreases or the population increases. We 
also find that the solutions to the optimization problem are always 
on the boundaries, suggesting that the selection of the constrain 
factors in Equation (4) is essential. Additionally, the influence of the 
constrain factors on the value of the objective function is not great.

By using the proposed optimization approach to conduct power 
calculation, researchers will be able to obtain a smaller and more 
precise sample size to conduct statistical analysis for precision 
medicine clinical trials. And they could also have a sketched 
idea about how many patients will be accrued for the secondary 
objective. The objective function we used is the sample size for 
treatment group patients, i.e., the sum of biomarker-positive and 
biomarker-negative sample sizes. In practice, researchers may have 
different priorities on sample sizes for primary and secondary 
objectives. Specifically, researchers may have a greater desire on 
minimizing the sample size for the primary objective. In this way, 
the optimal objective function will be the one shown in Equation 
(5). Since it may require more domain knowledge and beyond the 
scope of this paper, we have not discussed it in detail. The ultimate 
goal of this paper is to propose an innovative power calculation 
approach for precision medicine using the optimization approach, 
which may make better use of the information we have on the test 
treatment aiming to precisely compute the required sample size.
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