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Introduction
The Vessel-Collateral Theory first originated in the Qing 

Dynasty, when Ye Tianshi proposed this concept in Linzheng 
Zhinan Yi’an. Professor Yiling Wu inherited the traditional meridian 
theory and systematically constructed the Vessel-Collateral Theory 
to guide the prevention and treatment of vasculopathy [1]. He also 
proposed the concept of “vessel-vascular system diseases” based 
on the close correlation between collaterals and micro vessels. 
The collateral, as the main pathway for the transmission of qi, 
blood and fluid to realize the basic function and biochemical at 
the end of the veins, has the characteristics of network structure, 
diffuse distribution, bi-directional flow, and slow movement. 
Corresponding to collateral, the microcirculation theory under  

 
modern medical research believes that the microvessel is the main 
structure to carry out blood operation, material metabolism and 
energy exchange. According to the Vessel-Collateral. Theory, the 
tangible vessels of the internal organs form the vessel collaterals 
(blood), while the neuroendocrine immune regulation function 
formed by the cell signaling in the internal organs constitutes the 
invisible meridian collaterals (qi), and both qi and blood collaterals 
together complete the physiologic functions of “circulating qi and 
blood as well as nourishing yin and yang.” 

In modern medical theory, organ-specific microvascular 
endothelial cells, pericytes and surrounding blood cells in multiple 
organs including kidney constitute a relatively independent 
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The Vessel-Collateral Theory is a kind of disease model theory in Traditional Chinese Medicine, that describes changes in the vascular 
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microcirculatory whole, forming a guiding microenvironment 
called vascular niche, and the destruction of vascular niche is closely 
related to organ fibrosis. Therefore, the concept of “callateral-
microvessel” was proposed based on the similarity of functions and 
structures of callaterals and microvessels, the treatment of fibrosis 
according to this theory is to treat the collateral-qi stagnation or 
deficient stagnation, as well as the pathological products such as 
phlegm, stasis and heat through the vessel-vascular system diseases 
by using the herbs and prescriptions, which is a combination of 
Chinese and Western medicine to study the theory of microvascular 
lesions.

Fibrosis is a protective mechanism that follows inflammation 
and tissue injury by cells invading the injured area secrete large 
amounts of extracellular matrix to reconstruct and strengthen the 
damaged tissue to accelerate the healing process [2]. Based on 
this, we propose that the vascular niche is the basic structure of 
organ ligaments including the kidney and is a good entry point for 
modern research in ligamentology. Common mechanisms involved 
in fibrosis include the TGF/Smads pathway [3], some inflammatory 
signaling pathways such as Wnt/β-catenin, MAPK, NF-κB, PI3K/Akt, 
and JAK-STAT pathways [4-8], the CXCL12-CXCR4/CXCR7 pathway 
[9], the endothelial-to-mesenchymal transformation(EMT), and 
the epithelial mesenchymal transition(EMT) [10,11], as well as the 
regulation of some inflammatory mediators and cytokines such 
as hypoxia-inducible factor-1 (HIF-1)，peroxisome proliferator-
activated receptors (PPAR-γ), IL-10,IL-13, IL-21, TGF-β1, 
chemokines (MCP-1, MIP-1beta), angiogenic factors (VEGF), 
growth factors (PDGF), acute phase proteins (SAP), caspases, 
and components of the renin-angiotensin-aldosterone system 
(ANG II) [12-15]. The cells involved in these mechanisms include 
parenchymal cells of organs, vascular endothelial cells, pericytes, 
epithelial cells, myofibroblasts, and various immune cells [16-18]. 

According to current studies on the pathogenesis of organ 
fibrosis, the development of fibrosis is accompanied by a series of 
vascular changes, such as the rarefaction of peritubular capillaries 
[19], the defective repair of capillaries after injury [20], and 
divergent angiocrine signals from vascular niche [21], these factors 
result the proliferation of fibroblasts around blood vessels. During 
the progression of fibrosis, as changes in vascular tone, endothelial 
permeability and vascular regulation lead to inflammation, 
hypertension and coagulation, thus gas, solute and hormone 
exchange between blood and tissues is affected, subsequently 
affecting angiogenesis and remodeling [22,23]. Therefore, 
targeting the microvascular environment of injured tissues may 
mitigate fibrosis. Under the guidance of the Vessel-Collateral 
Theory, many prescriptions and Chinese medicines as well as their 
individual components are being studied, and these approaches 
have comprehensively elucidated the clinical application of Vessel-

Collateral Theory from the perspective of molecular biology, such 
as “Dahuang Zhechong pill (DHZC)”, “Buyang Huanwu decoction 
(BYHW)”, “Qili Qiangxin capsule (QLQX)”, “Xuefu Zhuyu soup 
(XFZY)”, “Naoxintong capsule (NXT)” and so on. These prescriptions 
show good efficacy in the clinical application of organ fibrosis. 
Therefore, it is a good supplement and alternative to use the theory 
and methods of Vessel-Collateral Theory in treating fibrosis. Based 
on the above reasons, we summarized the Chinese medicine and 
prescriptions for the treatment of organ fibrosis based on the 
Vessel-Collateral Theory.

Pulmonary Fibrosis

“Buyang Huanwu decoction (BYHW)” studied by collateral 
disease can reduce the expression of connective tissue growth 
factor (CTGF) and phosphor-AKT (p-AKT) to alleviate pulmonary 
fibrosis in rats and can also regulate the PI3K-Akt-ENOS pathway 
to improve pulmonary vascular remodeling [24,25]. LHQW has 
an antagonistic effect on the pro-inflammatory mediator’s TNF-α 
and IL-6 of the mechanism and reduce the degree of endothelial-
mesenchymal transition (EndMT) and fibrosis [26,28]. In addition, 
Tetramethylpyrazine(TMP), one of TCM monomers, regulated the 
SDF-1/CXCR4 pathway to inhibit angiogenesis or fibrosis, and 
inhibited the apoptosis of pulmonary microvascular endothelial 
cells (PMVEC) by the PERK/eIF2α/ATF4/CHOP apoptotic signal for 
improving microcirculation disorders and alleviating lung injury 
[29,30]. Astragaloside IV can inhibit TGF-β1/Smad2/3 signaling 
pathway, reduce the expression of collagen I, fibronectin (FN) and 
α-SMA, improve pulmonary vascular remodeling and alleviate 
pulmonary fibrosis [31,32]. Studies show that quercetin, gambogic 
acid, dihydroartemisinin(DHA) can effectively inhibit TGF-β-
mediated endothelial cell proliferation and EndMT in lung and skin 
fibrosis models [33]. Salvianolic acid B (Sal B) protected endothelial 
cells from oxidative stress by inhibiting endothelial cell permeability 
and reducing the expression of pro-inflammatory cytokines through 
MAPK and NF-κB signaling pathways and improves LPS-induced 
rat pulmonary microcirculation disorders [34,35]. Maxing Shigan 
Tang MXSGT ameliorated LPS-induced leukocytosis in pulmonary 
small veins of rats, and effectively inhibited the production of pro-
inflammatory factors and pulmonary perivascular edema, which 
shows that MXSGT has potential therapeutic effects on pulmonary 
microvascular hyperpermeability and inflammatory responses 
[36]. Pretreatment with andrographolide pills (AP) ameliorate LPS-
induced increase in cytokines, neutrophil adhesion and infiltration, 
oxidative stress and microvascular hyperpermeability [30]. 
Schisandrin (Sch), the active component of Schisandra chinensis, 
can attenuate LPS-induced lung endothelial and epithelial cell 
injury, reduce expression of vascular heme factor (vWF) and keratin, 
and activate cell regeneration possibly through inhibition of TLR-4/
NF-κB/MAPK activation and FoxO1 signaling pathway [37].
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Table 1: Chinese Medicine and Prescriptions inhibit fibrosis and inflammation through various pathways in different organs.

Organs Chinese Medicine and Prescrip-
tions Via the Mechanisms or Pathways References

BYHW PI3K-Akt-ENOS [5,9]

LHQW TNF-α,IL-6,and EndMT [26-28]

TMP SDF1/CXCR4,PERK/eIF2α/ATF4/CHOP [29,30]

Astragaloside IV TGF-β1/Smad2/3 [31,32]

Lung Quercetin, Gambogic acid, and 
DHA TGF-β,EndMT [54]

Sal B MAPK,NF-κB [34,35]

MXSGT Reduce inflammation [36]

AP Inhibit oxidative stress [58]

Sch TLR-4/NF-κB/MAPK, FoxO1 [37]

QSYQ Wnt/β-catenin and TGF-β/Smad [38,39]

QCF TGF-β1,α-SMA and E-cadherin [40]

YSHX miR-126/VEGF-Notch,TGF-β/Smad [41,42]

Tan IIA TGF-β/Smad, NF-κB [43]

Hirudin TGF-β1/Smad, NF-κB [44]

Ginsenoside Rg1 TGF-β1/Smad [44]

Kidney TWHF TGF-β ,Wnt/β-catenin [46]

Quercetin Reduce inflammation [47]

YGP Reduce inflammation [48]

MHCD TGF-β/Smad [49]

Huangqi decoction TGF-β/Smad [51]

GAS AMPK/Nrf2/HMGB1 [6]

HKC p38MAPK, TLR4/NF-κB [52,55]

XFZY TGF-β1,EndMT [60]

SSYX TGF-β1/Smad [61,62]

QLQX VEGF,p-AKT [63,64]

TXL PPAR-α [65]

NXT 1A(TL1A), VEGF-α [66]

BYHW Cav1/VEGF [67]

PR PI3K/Akt,Nrf2/p38-MAPK [68,69]

Heart Tan IIA with PR TLR4,TGF-β [70]

RAS-RH Induce fibroblasts apoptosis [71]

Cur P38 MAPK/ERK [72,73]

CP TGF-β/Smads [74]

QSYQ TGF-β/Smads [75-77]

SQ PPAR [78]

CS AMPK/mTOR/ULK1 [79]

SCA TGF-β1/TAK1/MAPK [82]
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TFM TGF-β1/Smad, NF-κB [59]

FSE TLR4/MyD88/NFκB,TGFβ/smads,EMT [84,85]

LWWL NF-κB,TGF-β/Smad,TIMP1 and TIMP2 [86,87]

FZHY PPARG [88]

CGA TGF-β1/Smad,EndMT [89]

DHZC PI3K/Akt [91,136]

Emodin TGF-β1,EndMT [92]

Liver Sal B TGF-β/Smad [93,94]

AU and AUG TGF-β1 [33]

FGP ACE/Ang II/AT-1R,ACE2/Ang 1-7/Mas [95]

Yu Jin Pulvis MAPK,PI3K/Akt [96]

XYXD NF-κB,TGF-β1 [97]

FL EMT,Nrf2 [98]

APE TGF-β/Smad [99]

HQD TGF-β1/Smads [100,101]

Artesunate Ferritinophagy-mediated ferroptosis [102]

BYHW HIF-1α/VEGF [104,105]

TXL Reduce inflammation [106,107]

Catalpol and Puerarin Improve cerebral microcirculation [108,109]

Galangin Wnt/β-catenin,HIF-1α/VEGF [110]

CG Reduce inflammation [111-113]

DLA TNF-α, IL-6,CD11b/CD18 [118]

CA p-ERK, p38,p- JNK [116]

SAB CD11b/CD18,CD62L, E-cadherin [115]

Brain TSI AMPK/Akt/PKC [117]

Rhy RhoA/ROCK [119]

IS Regulat complex I activity [120]

L-THP Inhibit the Src kinase phosphorylation [121]

T541 ADP/ATP、AMP/ATP and ATP5D [122]

KDZ Inhibit the Src kinase phosphorylation [123]

YXQNW and SC Maintain blood-brain barrier integrity [124,125]

YQFMQ Toll-4,p- Src and caveolin-1 [103]

QYT NF-κB [126]

BSHX RhoA/ROCK1/moesin [127]

DJZD MAPK,Akt and NF-κB [128]

WMP TGF-β/Smad,Wnt/β-linked [129]

Intestine WHTF Protein D1 and survivin [130]

Baicalein Inhibiting apoptosis and oxidation [131]

DHA PI3K-ATK, EndoMT [132]

Skin SAB TGF-β/SMAD, MAPK/ERK [133]

IT AMPK,WNT/β-catenin [134]
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Renal Fibrosis

The TGF/Smad pathway is the classical pathway of fibrosis 
mechanism and is capable of causing mesenchymal changes in 
a variety of cells. In view of this, collateral disease prescriptions 
including Qishen Yiqi pill (QSYQ), Quyu Chencuo prescription (QCF) 
and Yishen Huoxue prescription (YSHX) have antagonistic effect 
on this mechanism. QSYQ is a renal protective prescription, that 
can inhibit EndMT by Wnt/β -catenin and TGF-β/Smad signaling 
pathways, thus improve renal microcirculation disorders, prevent 
diabetic nephropathy and alleviate renal fibrosis [38,39]. QCF, 
as one of the Traditional Chinese medicine TCM prescriptione 
that can improve blood circulation, has been proved to improve 
renal interstitial microvascular environment and prevent the 
progression of renal fibrosis by regulating the expression of 
TGF-β1, α-SMA and E-cadherin in UUO rats [40]. YSHX can mediate 
renal microvasculogenesis and improve renal microvascular injury 
by upregulating miR-126/VEGF-Notch signaling pathway, and 
also inhibit TGF-β/Smad signal transduction, both of which can 
alleviate renal fibrosis [41,42]. In addition, tanshinone IIA (tan IIA) 
can reduce the levels of inflammation and fibrosis and ameliorate 
the disturbance of microvascular environment by inhibiting the 
activation of TGF-β/Smad and NF-κB signaling pathways in CKD 
rats [43]. Hirudin can inhibit renal fibrosis by blocking TGF-β1/
Smad and NF-κB pathways [44]. The treatment of ginsenoside 
Rg1 in combination with astragaloside IV can protect against 
microangiopathy in diabetic nephropathy by reducing oxidative 
stress and inhibiting TGF-β1/Smads signaling [45]. The anti-fibrosis 
effect of Tripterygium wilfordii Hook F (TWHF) is to ameliorate the 
microvascular injury of diabetic nephropathy by inhibiting TGF-β 
and Wnt/β-catenin signals [46]. Quercetin can not only inhibit the 
infiltration of M1 macrophages in renal interstitium and reduce 
inflammation, but also inhibit the activation of M2 macrophages 
and reduce the excessive accumulation of extracellular matrix, thus 
achieving the effect of treating renal interstitial fibrosis [47]. You-
gui Pill (YGP) is a traditional prescription that has been widely used 
to “warm the kidney”. Experiments show that YGP significantly 
reduce UUO-induced inflammatory cell infiltration, tubular 
atrophy and interstitial fibrosis [48]. Modified Huangqi Chifeng 
Decoction (MHCD) can inhibit secretion of extracellular matrix 
from glomerular thylakoid cells induced by inflammatory factor, 
suppress excessive activation of TGF-β/Smad signaling pathway 
thereby inhibiting fibrosis [49,50]. Huangqi decoction can dose-
dependently downgrade the expression of collagen and inhibit the 
activation of TGF-β/Smad signaling pathway to improve ipsilateral 
renal fibrosis in UUO mice [51]. Gastrodin (GAS), the main phenolic 
glycoside extracted from Gastrodia elata Blume, was found that 
can attenuate CCl(4)-induced kidney inflammation and fibrosis via 
the AMPK/Nrf2/HMGB1 pathway [6]. Huangkui capsule (HKC) is 
an anti-inflammatory Chinese modern patent medicine. Studies 
showed that HKC can alleviate renal fibrosis by suppressing the 

activation of p38MAPK signaling pathway and inhibiting NLRP3 
inflammasome activation and TLR4/NF-κB signaling pathways in 
the DN model rats [52-55].

Cardiac Fibrosis

Endothelial cells have the ability to convert to a smooth 
muscle-like phenotype, and the phenotypic transition is termed 
Endothelial-to-mesenchymal-transition (EndMT), which is a 
common mechanism in the process of organ fibrosis [56,57]. 
The prescription XFZY applied in collateral diseases can inhibit 
EndMT and fibroblast activation through TGF-β1 signaling pathway 
and improve myocardial fibrosis [58-60]. Shensong Yangxin 
capsule (SSYX) can inhibit TGF-β1/Smad signaling pathway, 
reduce fibrosis and improve cardiac function [61,62]. In addition, 
Qiliqiangxin Capsules (QLQX) can correct cardiac dysfunction 
and ventricular remodeling by upregulating VEGF expression and 
Akt phosphorylation, and its protective effect may be related to 
reduced apoptosis and myocardial fibrosis [63,64]. Tongxinluo 
(TXL) activates Angiopoietin-like 4 (Angptl4) under the regulation 
of PPAR-α pathway to maintain the functional and structural 
integrity of the endothelial barrier and protect the heart from I/R 
injury in diabetic rats [65]. Naoxintong capsule (NXT) has a variety 
of anti-thrombotic functions and can reduce the apoptosis of 
HUVECs by inhibiting the expression of tumor necrosis factor-like 
cytokine 1A(TL1A) and activating the expression of VEGF-α [66]. 
BYHW can reduce myocardial fibrosis and inflammation through 
Cav1/VEGF signaling pathway, so that can promote angiogenesis 
in infarct boundary area [67]. Puerarin (PR) can weaken EndMT 
and inhibit the activation of PI3K/Akt pathway by reactive oxygen 
species, so as to decelerate cardiac fibrosis [68]. PR can also rescue 
injured endothelial cells, improve repair function of vascular niche 
and prevent myocardial fibrosis by activating Nrf2 expression 
and inhibiting phosphorylation of p38-MAPK [69]. In addition, 
tan IIA combined with PR can reduce the expression of TLR4 and 
TGF-β, protect vascular endothelial cells, improve hemodynamics 
and vascular permeability, and inhibit myocardial fibrosis and 
ventricular remodeling [70]. Radix Angelica Sinensis and Radix 
Hedysari ultrafiltration extract (RAS-RH) can induce apoptosis, 
inhibit the levels of TGF-β1 and troponin-1(TnI), and reduce the 
expression of osteopontin (OPN), C-Jun, mirNA-21 and COL1α in 
fibroblasts, thus playing an anti-fibrosis role [71]. Curcumin (Cur) 
can inhibit the P38 MAPK/ERK signaling pathway to regulate the 
proliferation and cell cycle of cardiac fibroblasts, so as to inhibit 
abnormal growth of microvessels, and reduce cardiac fibrosis 
[72,73]. Cardiotonic pills (CP) improved myocardial fibrosis and 
prevented myocardial remodeling by inhibiting the expression 
of TGF-β1, P-Smad3, Smad4, MMP-9, α-SMA and CD68-positive 
cell number in rats I/ R-induced to myocardial infarction and 
fibrosis [74]. QiShen YiQi Pills (QSYQ) can reduce myocardial 
fibrosis by inhibiting the TGFβ1/Smads signaling pathways and 
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prevent ischemic myocardial injury by inhibiting the release of 
myocardial cTnI and restoring energy-regulated metabolism after 
myocardial ischemia [75-77]. Sang-qi Granula (SQ) is a proprietary 
Chinese medicine. It was found that SQ could significantly inhibit 
the expression of proinflammatory mediators and collagen 
depositation-related proteins in SHR rat cardiomyocytes and 
prevent cardiac fibrosis through PPAR signaling pathway [78]. 
Chikusetsusaponin IVa (CS) was demonstrated that can attenuate 
isoprenaline-induced myocardial fibrosis by activating autophagy 
through AMPK/mTOR/ULK1 pathway, reduce the heart index, 
inhibit inflammatory infiltration, and decrease collagen deposition 
and myocardial cell size [79].

Hepatic Fibrosis

Hepatic microcirculatory dysfunction is a key factor in causing 
chronic liver disease and liver fibrosis. The disruption of vascular 
homeostasis leads to portal hypertension, which is an important 
cause of compromising the liver [80,81]. Schisandra chinensis (SCA) 
is a traditional Chinese medicine for liver protection, and it was 
showed that SCA can ameliorate the liver fibrosis by inhibiting the 
HSCs activation and inflammatory response and inhibiting TGF-β1 
mediated TAK1/MAPK signal pathways [82]. Additionaly, the main 
active components of SCA, schisandrin C (Sin C) and Schisandrol B 
(SolB) was also found to have the effect of reversing liver fibrosis 
in mice [8,24,83]. Total flavonoids of Mallotus apelta leaf (TFM) 
can alleviate CCl(4)-induced hepatic fibrosis in rats by reducing 
ECM accumulation, improving antioxidant and regulating TGF-β1/
Smad signaling pathways and NF-κB-dependent inflammatory 
response [59]. The water-soluble component extracted from 
Forsythiae Fructuse, Forsythiae Fructuse water extract (FSE), can 
inhibit the development of liver fibrosis through TLR4/MyD88/
NF-κB and TGF-β/smads signaling pathways. In vivo, studys 
showed FSE attenuated CCl(4)-induced liver fibrosis in mice by 
inhibiting hepatic stellate cells (HSCs) activation, reducing hepatic 
extracellular matrix (ECM) disposition and reversing epithelial-
mesenchymal transition (EMT) [84,85]. There are results indicated 
that Liuweiwuling (LWWL) tablets, a Chinese traditional herbal 
prescription, can attenuate hepatic fibrosis in rats by modulating 
the NF-κB-dependent inflammatory response and TGF-β/Smad 
signaling pathway, as well as the expression levels of TIMP1 and 
TIMP2, which regulate extracellular matrix (ECM) degradation 
[86,87]. 

Fuzheng Huayu prescription (FZHY) have been found that its 
main active ingredients can directly bind to peroxisome proliferators-
activator receptor PPARG to reduce the activities of HSCs, thus 
playing an anti-fibrosis role [88]. The prescription CGA is modified 
from FZHY. CGA can inhibit EndMT by antagonizing TGF-β1/Smad 
signaling pathway, so as to reverse the transformation of HSCs into 
myofibroblasts and alleviate liver fibrosis [89,90]. DHZC can play a 

role of anti-fibrosis in liver, which can not only inhibit macrophage 
recruitment to hepatocyte and reduce the accumulation of collagen 
in liver tissue, but also inactivate PI3K/Akt pathway for inhibiting 
the proliferation of HSCs [91,136]. Additionally, emodin may reduce 
EndMT by inhibiting TGF-β1 signaling pathway and play an anti-
liver fibrosis role [92]. Sal B is a potential anti-liver fibrosis drug 
by inhibiting TGF-β/Smad signaling [93,94]. Aucubin (AU) and 
Aucubigenin (AUG), as active ingredients of eucommia ulmoides, 
can inhibit the activation of HSCs and ECM deposition induced 
by TGF-β1, so that they restore the disturbed microvascular 
microenvironment [33]. Fugan pill (FGP) can repair endothelial 
dysfunction and alleviate liver fibrosis by inhibiting ACE/Ang II/AT-
1R signaling pathway and enhancing ACE2/Ang 1-7/Mas signaling 
pathway [95]. Yu Jin Pulvis has anti-fibrosis effect on CCL4-induced 
mice by blocking MAPK and PI3K/Akt signaling pathways [96]. Xia-
yu-xue decoction (XYXD), a classical Collateral recipe used in China, 
was revealed to inhibit hepatic fibrosis by inhibiting HSC activation 
via inhibition of NF-κB and TGF-β1 signaling pathway [97]. The 
water extract of Lonicerae Japonicae Flos (FL) from carbon 
tetrachloride can attenuate CCl(4)-induced liver fibrosis in mice 
by inhibiting HSCs activation, reversing EMT and reducing liver 
oxidative stress injury via inducing Nrf2 activation [98]. Astragalus 
and Paeoniae radix rubra extract (APE) may inhibit the progression 
of CCl4‑induced hepatic fibrosis via scavenging free radicals, 
decreasing TGF‑β1 levels and blocking of the TGF‑β/Smad signaling 
pathway [99]. Huangqi decoction (HQD) can alleviate DMN-induced 
liver fibrosis via the regulation of bile acid metabolism enzyme and 
inhibit CDCA-induced HSCs proliferation and activation. Moreover, 
the main components of HDQ, the total astragalus saponins (AST) 
and glycyrrhizic acid (GA), synergistically alleviated hepatic 
fibrosis via TGF-β1/Smads signaling pathway inhibition in hepatic 
stellate cells [100,101]. Artesunate, a water-soluble hemisuccinate 
derivative of artemisinin, could alleviate liver fibrosis by regulating 
ferritinophagy-mediated ferroptosis in hepatic stellate cells (HSCs) 
[102, 103].

Other Organ Fibrosis

Studies also found some Vessel-Collateral Theory treatment 
methods that can inhibit organ fibrosis in brain, intestine, skin 
and other organs by repairing vascular endothelial cell injury and 
improving the microcirculation. For example, BYHW can prevent 
reperfusion injury after ischemic stroke in rats by inhibiting 
HIF-1α and VEGF, promoting angiogenesis and repairing brain 
tissue [104,105]. Tongxinluo capsule (TXL) can improve ischemic 
cerebrovascular disease by inhibiting inflammatory response, 
regulating vascular endothelial function and promoting angiogenesis 
[106,107]. Lyophilized Powder of Catalpol and Puerarin can improve 
cerebral microcirculation disorders and neurological recovery 
after cerebral ischemia by promoting vascular renewal [108,109]. 
Galangin promotes vascular neogenesis and vascular remodeling 
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through upregulation of Wnt/β-catenin and HIF-1α/VEGF signaling 
pathways in MCAO model rats [110]. Cerebral care Granule (CG) is a 
compound Chinese medicine used to treat headache and dizziness 
associated with cerebrovascular diseases. It was found that CG 
treatment could significantly reduce microvascular ultrastructural 
changes in the cerebral cortex of gerbils caused by I/R injury, reduce 
cerebral microvascular hydrogen peroxide production, leukocyte 
adhesion and albumin leakage, significantly reduce blood-brain 
barrier permeability and brain edema, and reduce brain neuronal 
damage [111-114]. The active monomer components of Salvia 
miltiorrhiza, such as 3,4-dihydroxyphenyl lactic acid (DLA), CA, 
Salvianolic acid B(SAB) and Total salvianolic acid injection (TSI), can 
also improve cerebral microvascular hyperpermeability and inhibit 
thrombogenesis through anti-inflammatory and antioxidant effects 
[115-118]. In addition, there are many prescription and herbs as 
well as single components that can improve perfusion and salvage 
cerebrovascular and neurological damage by inhibiting vascular 
endothelial cell injury and cerebral microcirculatory dysfunction, 
such as some components of herbs: Rhynchophylline(Rhy) [119], 
Icariside II (IS) [120], Levo-tetrahydropalmatine(L-THP) [121], 
herbal monomer complex T541(AS:SAA:PNS=5:4:1) [122] and 
some prescriptions: Kudiezi Injection(KDZ) [123], YangXue 
QingNao Wan(YXQNW) and Silibinin Capsules(SC) [124,125], 
Yiqifumai injection(YQFMQ)[102], Qing-Ying-Tang(QYT)[126], 
Bushen Huoxue(BSHX) [127]. All these methods play a positive role 
in treating fibrosis from the perspective of Vessel-Collateral Theory.

Dajianzhong decoction (DJZD) improves intestinal fibrosis 
and induces intestinal blood flow by regulating mitogen-activated 
protein kinase (MAPK), protein kinase B (Akt) and NF-κB activity 
[128]. Wumei pill (WMP) inhibit intestinal fibrosis and alleviate 
chronic colitis by regulating TGF-β/Smad and Wnt/β-linked 
protein pathways [129]. Dermal fibrosis is a major pathological 
change in systemic sclerosis (SSc), and Wenyang Huazhuo 
Tongluo prescription (WHTF) may exert anti-proliferative and 
pro-apoptotic effects on fibroblasts by downregulating mRNA and 
protein levels of protein D1 and survivin in SSc cells [130]. Baicalein 
from Scutellaria baicalensis is able to promote flap viability by 
stimulating angiogenesis and inhibiting apoptosis and oxidation 
[131]. Dihydroartemisinin (DHA) inhibits fibroblast activation 
and collagen deposition via the PI3K-ATK pathway to ameliorate 
tissue fibrosis and protects dermal vasculature from bleomycin-
induced EndoMT [132]. SAB can alleviate skin fibrosis and reduce 
collagen deposition in blomycin-induced SSc mouse model, reduce 
SSc skin fibroblast proliferation through TGF-β/SMAD and MAPK/
ERK pathways, and down-regulate extracellular matrix gene 
transcription and collagen expression [133]. Icaritin (IT), a natural 
compound of epimedium herb, was found to have an anti-skin 
fibrotic effect through activation of AMPK signaling and inhibition 
of WNT/β-catenin signaling [134].

Discussion
The above studies suggested that various TCM and monomer 

ingredients could inhibit abnormal activation of vascular 
microenvironment signaling pathways in different organs to repair 
microcirculation, thus achieving anti-inflammatory and anti-
fibrosis effects (Table1). It is especially worth pointing out that 
TCM prescriptions of collateral medicine can play a multi-level and 
multi-target role in the intervention the progression of fibrosis 
and protection of blood circulation system. New data from the 
COVID-19 pandemic suggest that there may be substantial fibrotic 
consequences following SARS-CoV-2 infection [135]. Thus, current 
therapies targeting fibrosis have value in the prevention and 
treatment of chronic lesions of the post-infected organ. Therefore, 
by studying the treatment of fibrosis with herbal compound and 
monomeric components under the collateral disease theory can 
bring richer experience for the treatment of fibrosis.
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