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Introduction
Neural Stem Cells (NSCs) and Neural Progenitor Cells (NPCs) 

isolated from human fetuses are an attractive source for cell 
therapy for almost all Central Nervous System (CNS) diseases 
without the need for special treatments [1-3]. Human NSCs/NPCs 
are widely distributed in the fetal forebrain, Sub-Granular Zone 
(SGZ), Subventricular Zone (SVZ), and the dentate gyrus of the 
hippocampus in the adult brain [4,5]. NSCs/NPCs self-renew by 
proliferating in an undifferentiated state and can differentiate into 
neurons, oligodendrocytes, and astrocytes [6]. Damaged cells do 
not regenerate in mammals with CNS diseases, including humans. 
Transplanted NSCs/NPCs proliferate and continue to differentiate 
into neuronal and glial cells. 

The resulting neuro-regeneration may serve as a curative 
treatment for CNS diseases. Research, development, and human 
clinical trials require homologous NSCs/NPCs and other sources of 
NSCs/NPCs. NSCs/NPCs are the best raw materials for cell therapy 
for treating CNS diseases, including Alzheimer’s Disease (AD), 
Parkinson’s Disease (PD), Spinal Cord Injury (SCI), Amyotrophic 
Lateral Sclerosis (ALS), and stroke. Most studies on CNS diseases  

 
use NSCs/NPCs isolated from the brain or spinal cord of embryonic 
mice [7,8]. However, clinical trials require human allogenic NSCs/
NPCs. Human-derived NSCs/NPCs can be obtained in various ways 
[3,9-14]. 

There are three main types of Pluripotent Stem Cells (PSCs). 
Embryonic Stem Cells (ESCs) isolated from blastocysts are relatively 
easy to establish. ESCs are highly effective and can differentiate into 
all cell types. Therefore, there are no restrictions on diseases that 
can be treated using ESCs. Also, they have high market scalability. 
However, ethical concerns are associated with the use of embryonic 
tissues [10,11]. Reprogramming somatic cells into pluripotent ESCs 
by somatic cell nuclear transfer allows for mass production of cells 
with no immune rejection. However, ethical problems remain: the 
process uses eggs and there is still the possibility of cancer.

The second type of PSCs is induced PSCs (iPSCs). These can be 
obtained through reverse differentiation using well-established 
methods. Therapeutic efficacy is pronounced as there are no 
restrictions on diseases that can be treated. Market scalability 
is the highest of all PSCs and there are no ethical or immune 
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rejection problems. However, there is a possibility of cancer, and 
the stability of the introduced foreign genes is continuously being 
investigated [12,13]. Mesenchymal Stem Cells (MSCs) are the third 
PSC type. They were first identified in the bone marrow [15] and 
subsequently in other locations, including umbilical cord tissue 
[16,17], umbilical cord blood [18], adipose tissue [19,20], skin [21], 
the dental pulp [22], and pancreas [23]. Adult MSCs can be both 
allogeneic and autologous. Both can be separated directly from the 
adult tissues and are relatively easy to obtain. Many methods have 
already been developed for MSCs, which permit easy acquisition, 
reduce ethical concerns, and the likelihood of immune rejection.

However, mass production is difficult, and if autologous MSCs 
are not used, immune rejection may occur. Treatment efficiency is 
low for autologous and allogeneic MSCs, and diseases amenable to 
treatment can be limited. Market expansion for autologous MSCs 
is the lowest of all PSCs because of the one-to-one approach but is 
relatively high for allogeneic MSCs because the cells can be used 
in many immune-compatible patients [15,21,24]. Neurogenesis 
is limited in healthy adult mammals [9,25,26]. In contrast, brain 
tissue derived NSCs/NPCs, a representative adult mammalian 
tissue isolated from the adult brain, can continue to proliferate in 
vitro. During nerve transplantation, cells become integrated into 
cell survival, migration, and the host CNS. No tumors have yet been 
reported [27]. NSCs/NPCs implanted into the brain of an animal 
model with degenerative neurological disease differentiate into 
appropriate neurons in response to a microenvironmental or a 
disease-specific signal, regenerating damaged neurons [28-30]. 
Transplanted NSCs/NPCs specifically move to nerve damage sites 
and migrate extensively across the entire neural axis, providing 
cells, neurotrophic factors, neurotransmitters, axons, extracellular 
substrates, and cell-adhesive molecules to induce neurogenesis and 
angiogenesis [31]. 

Fetal-derived NSCs/NPCs were obtained from medically (and 
legally) aborted fetuses. While the origin of the cells can be ethically 
contentious, the cells displayed the best growth and differentiation 
rates among all NSCs/NPCs. The donation of aborted fetuses was 
restricted. Furthermore, since it is difficult even for experts with 
professional anatomical knowledge to separate the brain and 
spinal cord according to fetal development, the availability and use 
of fetal-derived NSCs/NPCs can be globally restricted [1,32-34]. In 
addition, cell viability and composition vary from donor to donor, 
and the likelihood of immunological rejection or contamination can 
increase with the heterogeneity of donor cells [1].

Clinical trials for various CNS diseases, including SCI, PD, AD, 
MS, ALS, and stroke, have used primary fetal brain and spinal 
cord tissue derived NSCs/NPCs. These trials demonstrate that 
therapy with NSCs may be suitable for neurodegenerative diseases 
[35,36]. The status of clinical trials on targeted NSC/NPC therapy 

for intractable CNS diseases is available at the National Library 
of Medicine (ClinicalTrials.gov). A total of 37 clinical trials based 
on human fetal-derived NSCs/NPCs are currently in progress. In 
one trial, 23 patients were administered fetal-derived NSCs/NPCs 
(23%) and 10 patients received gene therapy using fetal-derived 
NSCs/NPCs (27%). Two clinical trials used ESC-NSCs (5%), one 
used porcine PSC-NSCs (2%), and one used iPSC-NSCs (2%). 
NSCs/NPCs derived from human fetuses have often been used as 
treatments. Clinical trials involving NSCs/NPCs most often target 
SCI, whereas glioma is the most common target for clinical trials 
involving NSC/NPC-based gene therapy [3]. As expected, the most 
common CNS disease targets are SCI, stroke, PD, and ALS [3,35].

In addition to the aforementioned fetal-derived NSCs/NPCs, 
clinical trials for CNS are underway with various other types of stem 
cells. However, these treatments are not yet commercially available. 
As human fetal NSCs/NPCs are superior to other raw materials, 
research following the establishment of a separation culture 
technique is important. Many studies are required before the 
clinical application of human NSCs/NPCs could be realized. During 
the development of the neurological system, a method to develop 
neurological stem cells is used to identify the differentiation, 
neurogenic, and regenerative mechanisms of NSCs/NPCs. Studies 
are needed to evaluate the appropriateness and economics of 
stem cell therapy, develop functional transplants according to 
the pathophysiology of each refractory neurological disease, 
identify the effects of cell transplantation in disease models, clarify 
long-term side effects, and identify protective agents. Strategic 
developmental research aimed at applying treatments together is 
necessary [33,37].

The research will need to encompass all the processes such as 
chemistry, manufacturing, and control (CMC), the clinical application 
of NSCs/NPCs, and the non-clinical tests (such as potency tests, 
distribution tests, toxicity tests, and oncogenicity tests). Effective 
cell lines have been established at a laboratory level. To utilize 
these cell lines as stem cell treatments, data on the safety of these 
treatments must be secured and approved by regulatory agencies 
such as the Food and Drug Administration [3,38]. At the laboratory 
level, studies have been performed using various animal models 
or cells to confirm the therapeutic efficacy of cultured cells. These 
studies have revealed the treatment mechanisms. The findings 
are published in peer-reviewed literature. However, evaluating 
efficacy from the perspective of commercialization is the starting 
point of cell therapy development. The development of treatments 
for nerve tissue regeneration should continue, given that damaged 
nerve tissues cannot be regenerated. It is not guaranteed that CNS 
cell therapies based on NSCs/NPCs, currently under development, 
will ultimately prove to be safe treatments with significant benefits 
for patients.
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For the clinical application of cell therapies for CNS disorders, 
the availability of continuous and standardized clinical-grade stem 
cells following current good manufacturing practice guidelines that 
can combine the plasticity of human fetal-derived NSCs/NPCs with 
extensive proliferative capabilities and functional stability will be 
crucial [1]. 
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