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Abstract

Various types of resident microorganisms are colonized in the human oral cavity, and they are mainly probiotics that are beneficial to the health
of the host. These bacteria and foreign temporary bacteria mainly gather in the dental plaque biofilm on the tooth surface. Dextranase is a glycosidic
bond hydrolase, which specifically hydrolyzes the o-1,6 glycosidic bond of dextran that is the mainly component of the biofilm and can be used to
remove dental plaque biofilm. This article mainly reviews the removal of dental plaque biofilm by dextranase.
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Introduction

The human oral cavity is a very suitable environment
for microbial colonization. Studies have found that these
microorganisms mainly accumulate on the biofilm (plaque) on the
tooth surface. Dental plaque biofilm is a chronic bacterial disease
that occurs on or inside teeth. It is characterized by high incidence
and wide distribution, which seriously endangers human health,
especially oral health. Removal of these plaques can effectively
reduce the adhesion of microorganisms to the surface of the
plaque mucosa. Streptococcus mutans presented in the human oral
cavity ferments the residual sucrose in the oral cavity to produce
water-soluble dextran with a-1,6, a-1,3 glucan bond as the main
extracellular polysaccharide. Controlling dextran to reduce the
formation of dental plaque biofilm has become an important means
to prevent dental caries. This review mainly focuses on the removal
of dental plaque biofilm with dextranase.

The Formation of Dental Plaque Biofilm

There are a large number of microorganisms in the oral
cavity of animals [1]. Dental plaque biofilm is composed of many
microbial flora and adheres to the surface of teeth, which has an
important impact on oral health. many oral diseases are related
to the formation of dental plaque [2,3]. At present, S. mutans plays
significant role in the forming of dental caries. Therefore, S. mutans
is often used as a model strain in researching and constructing
dental plaque biofilms [4]. The formation of dental plaque biofilm
changes dynamically with time. Kolenbrander found that the initial
stage of dental plaque biofilm is mainly Streptococcus, and the
later stage is mainly Bacillus, Filamentous and Actinomycetes [5].
S. mutans, S. sobrinus and S. sanguis are the early strains of dental
plaque biofilm formation and play a key role in the formation of
dental caries [4, 6]. Alahmad found that the main component of
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dental plaque biofilm was Streptococcus on the first day [7]. In
addition, studies have found that dead bacteria are also one of the

components in the biofilm.

In the early process of dental plaque biofilm formation, they
compete with live bacteria for contact positions, thereby promoting
the formation of biofilm [8]. In the early days, the adsorption of
biofilm was implemented by Streptococcus mainly, which produced
adhesintobindtotheproteinreceptorsonthe formedtooth-acquired
membrane and colonized the tooth surface [9]. Streptococcus can
produce three kinds of glucosyltransferases, namely GtfD that
synthesizes water-soluble o-1,6-glucan, GtfB that synthesizes
water-insoluble a-1,3-glucan, and a mixture of two glucans. GtfC,
they can quickly synthesize extracellular polysaccharides from
dietary sucrose [9-11]. These two extracellular polysaccharides are
connected in an orderly spiral form to form a dental plaque matrix,
provided a colonization site for other oral microorganisms, thereby
other oral microorganisms were promoted to colonize the dental
plaque matrix. Finally, a plaque biofilm was formed and attached
firmly on a surface of the tooth [12,13].
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The Source and Characteristics of Dextranase

Dextranase has been found in animals, plants, and

microorganisms. The most reported dextranases are from
microorganisms, including fungi and bacteria. Compared with
dextranase derived from yeast and bacteria, molds usually
have higher enzyme activity [14]. The dextranases produced
by Chaetomium and Penicillium have been used in industrial
production. P lilacinum NRRL896 and P. funiculosum NRRL1132
have been reported they could produce dextranases that have
relatively high optimal reaction temperature. Furthermore,
the optimal p" of reaction was in slightly acidic condition. The
characteristics of dextranase from molds were listed in Table
1&[15]. There are different sources of bacteria that could produce
dextranase, and the enzymatic properties are also quite different.
The time of bacterial fermentation to produce dextranase is shorter
than that of mold fermentation, generally about 2 days. With less
secondary metabolites, it would be conducive to the purification
of dextranase in the later stage, and has little toxicity [16]. The
properties of dextranase secreted form bacteria was listed in Table

1 [17-25]. The optimal of temperature and p" were diversity.

Table 1: Classification and characteristics of dextranase producing bacteria.

Category Strain Name Enzymatic Properties References
Penicillium funiculosum T 55°C, p" 5.0-5.5 [17]
Penicillium Penicillium notatum1 T 55°C, p" 5.0 [18]
Penicillium aculeatum T 50-60°C, p" 5-6 [19]
Sporothrix Sporothrix schenckii T 55, p' 5.0, Mw 79 kDa [20]
Paecilomyces Paecilomyces lilacinus T 65°C, p" 5.4 [21]
Fungus Hypocrea Hypocrea lixii F1002 T 25°C, p 5.0 [22]
Chaetomium globosum [23]
Chaetomium T 60°C, p"5.2, Mw 59k Da
Chaetomium erraticum [24]
Fusarium Fusarium moniliforme T 55°C, p 5.5 [25]
Lipomyces Lipomyces starkeyi T 37°C, p"6, Mw 67.6 kDa [26]
Arthrobacter oxydans KQ11 T 50°C, p" 7, Mw 66.2 kDa [27]
Arthrobacter Arthrobacter sp. T 45°C, p" 5.5 [28]
Arthrobacter oxydans CB-8 T 40°C, p" 7.2 [29]
Bacterial Bacillus Bacillus sp. T 50°C, p"6.8 [30]
Thermoanaerobacterium Thermoasr;(lcir}";;llrc(l)zsilrcilljrrg thermo- T 65-70°C, p" 5.5, Mw200kDa [31]
Actinomyces Actinomyces israelii p"6.3 [32]
Streptomyces Streptomyces sp. NK458 T 60°C, p"9.0, Mw 130 kDa [33]
Thermoanaerobacter Thermoanaerobacter sp. AB11Ad T 70°C, p"5-6 [34]
Thermotoga Thermotoga lettingae TMO 55-65°C, p"4.3 [35]

Dextranase Removing Dental Plaque

Dextranase has represented excellent effect value in the
prevention and removal of dental plaque biofilm [26-35]&[Table
2]. As early as 1971, Caldwell and Robert conducted related

studies on adding dextranase to mouthwashes to treat dental

plaque biofilm [36]. In 1972, Keyes reported that dextranase can
effectively remove dental plaque, and researchers continue to
study the inhibitory effect of dextranase on dental plaque [37]. In
2002, Marotta hydrolyzed the water-insoluble glucan produced by
S. sobrinus with commercial dextranase and also eliminated glucan
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that had already formed [38]. In recent years, more and more
researchers have carried out research on dextranase to remove
and defend dental plaque biofilm. Qiu used S. mutans, Lactobacillus
acidophilus and Actinomycetes to establish a biofilm system in vitro,
and then he added dextranase, sodium fluoride and the mixture
to treat the biofilm. It was found that the biofilm treated with

Table 2: Biofilm inhibitory rates at dextranase.
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the mixture was very thoroughly damage [39,40] discovered the
dextran-dependent aggregation of S. mutans through microarray
analysis of clinical strains. When dextranase was added, S. mutans
also cannot aggregate, thereby the formation of dental plaque
biofilm was reduced significantly [40].

Strain Name Addition ofllzlixtrance w/ Biofilm Formation Inhibition Rate (%) References

Catenovulum agarivorans MNH15 7 91.79+0.68 [41]
Catenovulum sp. DP03 Cadex2870 8 90.84£2.26 [43]
Catenovulum sp. Cadex 35 94.21+1.13 [44]
Arthrobacter sp. 6 76.787+3.8 [45]
Arthrobacter oxydans KQ11-1 9 91.10+0.05 [46]

Penicillium sp. 1 9.9340.29 [39]

Xiaohua Lai isolated the marine bacterium Catenovulum
agarivorans MNH15 that could secret dextranase. The study
showed that the dextranase could be very effective inhibited the
formation of dental plaque biofilm. Furthermore, there was a good
removal effect on the dental plaque biofilm that had already shaped
by S. mutans [41]. Otsuka linked the mutanase gene derived from
Paenibacillus humicus NA1123 and the dextranase gene derived
from S. mutans ATCC 25175 into the vector at the same time and the
E. coli expressed a chimera with two enzyme functions. The chimeric
enzyme could degrade water-insoluble glucan and it expressed
efficiency ability to destroy the biofilm. Moreover, removal rate was
over 4 times higher than the mixture of dextranase and mutanase
[42]. At present, most of the oral care products on the market are
added with antibacterial agents such as alcohol, lysozyme, while
products containing non-antibacterial dextranase are rare [43-
46]. Some companies in the United States and Japan are mainly
producing oral care products containing dextranase. Compared
with the mechanical method and the chemical drug method, the
biological enzyme method has significant advantages such as
safety, effectiveness and low price. Therefore, the research and
development of adding biological enzymes in oral care products
have broad prospects.

Conclusion

The unlimited construction of dental plaque biofilm is a natural
phenomenon that exists in everyone’s mouth. As a result, S. mutans
causes severe dental caries, dental plaque and endocarditis, which
seriously affects human health. Therefore, necessary precautions
need to be taken to avoid these troublesome infections. For oral
care products, they must have a tooth-protecting effect without
disturbing the natural environment of probiotics in mouth. The
inhibitory effect of dextranase on S. mutans has been confirmed.

The dextranase that is appropriately added in oral care products

research should be selective and targeted. The optimal temperature
and p" of dextranase are important, and the dextranase will not
be affected by other additives of oral care products. Furthermore,
the stability of dextranase in room temperature need to focus on.
Dextranases have broad prospective to protect human oral health
of the microenvironment of human mouth.
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