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Introduction
The human oral cavity is a very suitable environment 

for microbial colonization. Studies have found that these 
microorganisms mainly accumulate on the biofilm (plaque) on the 
tooth surface. Dental plaque biofilm is a chronic bacterial disease 
that occurs on or inside teeth. It is characterized by high incidence 
and wide distribution, which seriously endangers human health, 
especially oral health. Removal of these plaques can effectively 
reduce the adhesion of microorganisms to the surface of the 
plaque mucosa. Streptococcus mutans presented in the human oral 
cavity ferments the residual sucrose in the oral cavity to produce 
water-soluble dextran with α-1,6, α-1,3 glucan bond as the main 
extracellular polysaccharide. Controlling dextran to reduce the 
formation of dental plaque biofilm has become an important means 
to prevent dental caries. This review mainly focuses on the removal 
of dental plaque biofilm with dextranase.

The Formation of Dental Plaque Biofilm

There are a large number of microorganisms in the oral 
cavity of animals [1]. Dental plaque biofilm is composed of many 
microbial flora and adheres to the surface of teeth, which has an 
important impact on oral health. many oral diseases are related 
to the formation of dental plaque [2,3]. At present, S. mutans plays 
significant role in the forming of dental caries. Therefore, S. mutans 
is often used as a model strain in researching and constructing 
dental plaque biofilms [4]. The formation of dental plaque biofilm 
changes dynamically with time. Kolenbrander found that the initial 
stage of dental plaque biofilm is mainly Streptococcus, and the 
later stage is mainly Bacillus, Filamentous and Actinomycetes [5]. 
S. mutans, S. sobrinus and S. sanguis are the early strains of dental 
plaque biofilm formation and play a key role in the formation of 
dental caries [4, 6]. Alahmad found that the main component of 
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dental plaque biofilm was Streptococcus on the first day [7]. In 
addition, studies have found that dead bacteria are also one of the 
components in the biofilm. 

In the early process of dental plaque biofilm formation, they 
compete with live bacteria for contact positions, thereby promoting 
the formation of biofilm [8]. In the early days, the adsorption of 
biofilm was implemented by Streptococcus mainly, which produced 
adhesin to bind to the protein receptors on the formed tooth-acquired 
membrane and colonized the tooth surface [9]. Streptococcus can 
produce three kinds of glucosyltransferases, namely GtfD that 
synthesizes water-soluble α-1,6-glucan, GtfB that synthesizes 
water-insoluble α-1,3-glucan, and a mixture of two glucans. GtfC, 
they can quickly synthesize extracellular polysaccharides from 
dietary sucrose [9-11]. These two extracellular polysaccharides are 
connected in an orderly spiral form to form a dental plaque matrix, 
provided a colonization site for other oral microorganisms, thereby 
other oral microorganisms were promoted to colonize the dental 
plaque matrix. Finally, a plaque biofilm was formed and attached 
firmly on a surface of the tooth [12,13].

The Source and Characteristics of Dextranase

Dextranase has been found in animals, plants, and 
microorganisms. The most reported dextranases are from 
microorganisms, including fungi and bacteria. Compared with 
dextranase derived from yeast and bacteria, molds usually 
have higher enzyme activity [14]. The dextranases produced 
by Chaetomium and Penicillium have been used in industrial 
production. P. lilacinum NRRL896 and P. funiculosum NRRL1132 
have been reported they could produce dextranases that have 
relatively high optimal reaction temperature. Furthermore, 
the optimal pH of reaction was in slightly acidic condition. The 
characteristics of dextranase from molds were listed in Table 
1&[15]. There are different sources of bacteria that could produce 
dextranase, and the enzymatic properties are also quite different. 
The time of bacterial fermentation to produce dextranase is shorter 
than that of mold fermentation, generally about 2 days. With less 
secondary metabolites, it would be conducive to the purification 
of dextranase in the later stage, and has little toxicity [16]. The 
properties of dextranase secreted form bacteria was listed in Table 
1 [17-25]. The optimal of temperature and pH were diversity. 

Table 1: Classification and characteristics of dextranase producing bacteria.

Category Strain Name Enzymatic Properties References

Fungus

Penicillium

Penicillium funiculosum T 55℃, pH 5.0-5.5 [17]

Penicillium notatum1 T 55℃, pH 5.0 [18]

Penicillium aculeatum T 50-60℃, pH 5-6 [19]

Sporothrix Sporothrix schenckii T 55, pH 5.0, Mw 79 kDa [20]

Paecilomyces Paecilomyces lilacinus T 65℃, pH 5.4 [21]

Hypocrea Hypocrea lixii F1002 T 25℃, pH 5.0 [22]

Chaetomium
Chaetomium globosum

T 60℃, pH 5.2, Mw 59k Da
[23]

[24]Chaetomium erraticum

Fusarium Fusarium moniliforme T 55℃, pH 5.5 [25]

Lipomyces Lipomyces starkeyi T 37℃, pH6, Mw 67.6 kDa [26]

Bacterial

Arthrobacter

Arthrobacter oxydans KQ11 T 50℃, pH 7, Mw 66.2 kDa [27]

Arthrobacter sp. T 45℃, pH 5.5 [28]

Arthrobacter oxydans CB-8 T 40℃, pH 7.2 [29]

Bacillus Bacillus sp. T 50℃, pH 6.8 [30]

Thermoanaerobacterium Thermoanaerobacterium thermo-
saccharolyticum T 65-70℃, pH 5.5, Mw200kDa [31]

Actinomyces Actinomyces israelii pH 6.3 [32]

Streptomyces Streptomyces sp. NK458 T 60℃, pH 9.0, Mw 130 kDa [33]

Thermoanaerobacter Thermoanaerobacter sp. AB11Ad T 70℃, pH 5-6 [34]

Thermotoga Thermotoga lettingae TMO 55-65℃, pH 4.3 [35]

Dextranase Removing Dental Plaque

Dextranase has represented excellent effect value in the 
prevention and removal of dental plaque biofilm [26-35]&[Table 
2]. As early as 1971, Caldwell and Robert conducted related 
studies on adding dextranase to mouthwashes to treat dental 

plaque biofilm [36]. In 1972, Keyes reported that dextranase can 
effectively remove dental plaque, and researchers continue to 
study the inhibitory effect of dextranase on dental plaque [37]. In 
2002, Marotta hydrolyzed the water-insoluble glucan produced by 
S. sobrinus with commercial dextranase and also eliminated glucan 
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that had already formed [38]. In recent years, more and more 
researchers have carried out research on dextranase to remove 
and defend dental plaque biofilm. Qiu used S. mutans, Lactobacillus 
acidophilus and Actinomycetes to establish a biofilm system in vitro, 
and then he added dextranase, sodium fluoride and the mixture 
to treat the biofilm. It was found that the biofilm treated with 

the mixture was very thoroughly damage [39,40] discovered the 
dextran-dependent aggregation of S. mutans through microarray 
analysis of clinical strains. When dextranase was added, S. mutans 
also cannot aggregate, thereby the formation of dental plaque 
biofilm was reduced significantly [40]. 

Table 2: Biofilm inhibitory rates at dextranase.

Strain Name Addition of Dextrance (U/
mL Biofilm Formation Inhibition Rate (%) References

Catenovulum agarivorans MNH15 7 91.79±0.68 [41]

Catenovulum sp. DP03 Cadex2870 8 90.8±2.26 [43]

Catenovulum sp. Cadex 35 94.21±1.13 [44]

Arthrobacter sp. 6 76.787±3.8 [45]

Arthrobacter oxydans KQ11-1 9 91.10±0.05 [46]

Penicillium sp. 1 9.93±0.29 [39]

Xiaohua Lai isolated the marine bacterium Catenovulum 
agarivorans MNH15 that could secret dextranase. The study 
showed that the dextranase could be very effective inhibited the 
formation of dental plaque biofilm. Furthermore, there was a good 
removal effect on the dental plaque biofilm that had already shaped 
by S. mutans [41]. Otsuka linked the mutanase gene derived from 
Paenibacillus humicus NA1123 and the dextranase gene derived 
from S. mutans ATCC 25175 into the vector at the same time and the 
E. coli expressed a chimera with two enzyme functions. The chimeric 
enzyme could degrade water-insoluble glucan and it expressed 
efficiency ability to destroy the biofilm. Moreover, removal rate was 
over 4 times higher than the mixture of dextranase and mutanase 
[42]. At present, most of the oral care products on the market are 
added with antibacterial agents such as alcohol, lysozyme, while 
products containing non-antibacterial dextranase are rare [43-
46]. Some companies in the United States and Japan are mainly 
producing oral care products containing dextranase. Compared 
with the mechanical method and the chemical drug method, the 
biological enzyme method has significant advantages such as 
safety, effectiveness and low price. Therefore, the research and 
development of adding biological enzymes in oral care products 
have broad prospects.

Conclusion
The unlimited construction of dental plaque biofilm is a natural 

phenomenon that exists in everyone’s mouth. As a result, S. mutans 
causes severe dental caries, dental plaque and endocarditis, which 
seriously affects human health. Therefore, necessary precautions 
need to be taken to avoid these troublesome infections. For oral 
care products, they must have a tooth-protecting effect without 
disturbing the natural environment of probiotics in mouth. The 
inhibitory effect of dextranase on S. mutans has been confirmed. 
The dextranase that is appropriately added in oral care products 

research should be selective and targeted. The optimal temperature 
and pH of dextranase are important, and the dextranase will not 
be affected by other additives of oral care products. Furthermore, 
the stability of dextranase in room temperature need to focus on. 
Dextranases have broad prospective to protect human oral health 
of the microenvironment of human mouth. 
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