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Abstract

Background: Margin assessment of basal cell carcinoma using the frozen section is a common task of pathology intraoperative consultation. 
Although frequently straightforward, the determination of the presence or absence of basal cell carcinoma on the tissue sections can sometimes be 
challenging. We explore if a deep learning model trained on mobile phone-acquired frozen section images can have adequate performance for future 
deployment. 

Materials and Methods: One thousand two hundred and forty-one (1241) images of frozen sections performed for basal cell carcinoma margin 
status were acquired using mobile phones. The photos were taken at 100x magnification (10x objective). The images were downscaled from a 
4032x3024 pixel resolution to 576x432 pixel resolution. Semantic segmentation algorithm Deeplab V3 with Xception backbone was used for model 
training. 

Results:  The model uses an image as input and produces a 2-dimensional black and white output of prediction of the same dimension; the 
areas determined to be basal cell carcinoma were displayed with white color, in a black background. Any output with the number of white pixels 
exceeding 0.5% of the total number of pixels is deemed positive for basal cell carcinoma.  On the test set, the model achieves area under curve of 0.99 
for receiver operator curve and 0.97 for precision-recall curve at the pixel level. The accuracy of classification at the slide level is 96%. 

Conclusions: The deep learning model trained with mobile phone images shows satisfactory performance characteristics and thus demonstrates 
the potential for deploying as a mobile phone app to assist in frozen section interpretation in real time.

Keywords: Deep learning; Semantic Segmentation; Basal Cell Carcinoma; Frozen Section

Abbreviations: IOU: Intersection-Over-Union; ROC Curve: Receiver Operating Characteristic curve; AUC: Area Under the ROC Curve; ASSP: Atrous 
Spatial Pyramid Pooling; TP: True Positive; FP: False Positive; FN: False Negative 

Introduction 
Basal cell carcinoma is the most common skin cancer 

worldwide and continuing to increase in incidence [1]. Surgical 
excision is a common modality of treatment and the frozen section  

 
can be judiciously used intraoperatively to determine the margin 
status of the excision, particularly for the lesions in the critical 
anatomical sites such as the nose, cheeks, eyelids, chin, lips and 
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forehead [2]. For these locations, a persistent/recurrent disease 
from an incomplete primary excision would demand a far more 
aggressive and disabling secondary surgery [2]. Deep learning 
models trained with microscopic images have been used to detect, 
classify and grade cancers with promising results [3-12]. Most of 
the studies used digitized images obtained from the permanent 
sections derived from formalin-fixed and paraffin-embedded tissue, 
acquired using the whole slide imaging technique. Although the 
interpretation of the presence or absence of basal cell carcinoma 
on the frozen section slides are straightforward most of the time, it 
can sometimes be challenging. We seek to explore if a deep learning 
model trained on mobile phone-acquired frozen section images can 
have adequate performance for its future deployment as a mobile 
phone app for real-time assistance to the pathologists.

Materials and Methods
One thousand two hundred and forty-one (1241) images 

of frozen sections performed for basal cell carcinoma margin 
status was acquired using two different mobile phones by two 
dermatopathologists (JWZ and JJY) from their institutions. The 
photos were taken at 100x magnification (10x objective). Five 
hundred ninety-eight (598) images contain basal cell carcinoma 
and 643 images are negative for basal cell carcinoma. These images 
were randomly partitioned into the training set (1,116 images) 
and the test set (125 images), with each set containing a similar 
proportion of images with or without basal cell carcinoma.

 The images were downscaled from a 4032 x 3024-pixel 
resolution to 576 x 432-pixel resolution. Semantic segmentation 
algorithm Deeplab V3 [12] with Xception [13] backbone developed 
by Google was used to train our model. The weights were pre-trained 
on PASCAL VOC 2012 and fine-tuned with our own dataset. In this 
study, the Atrous Spatial Pyramid Pooling (ASPP) rate was (6,12,18) 
and the output stride was 16. We used Adam optimizer with an 
initial learning rate of 1E-3 and sigma of 1E-8. The performance 
of the trained model was evaluated by the following metrics. Mean 
IOU (Jaccard Index) is the average IOU over all classes. The IOU for 
each class was defined as follows:

IOU = TP / (TP + FP + FN)

To further evaluate our segmentation model, we also reported 
the pixel level receiver operating characteristic curve (ROC) and 
precision-recall (PR) curve.	 Image level basal cell carcinoma 
classification was performed by calculating the number of positive 
pixels in each model outputs with respect to the input image. A 
threshold of 0.5% was used.

Results 
Our deep learning model on basal cell carcinoma achieved 

satisfactory results (Figure 1A-1E) showed the original image, our 
model classification and ground-truth labeling respectively from 

the leftmost to the rightmost for selected examples. As shown, our 
model prediction identified the overall shapes and locations of 
the lesions in most images in the test set.  In some locations the 
prediction could be coarse, which might have resulted from the 
coarse ground-truth labels in our dataset (Figure 1A) showed a 
high-quality segmentation output that largely overlapped with 
the ground-truth label (Figure 1E) showed a representative image 
with false positive prediction. The possible reason for this might be 
because the convolution neural networks were less sophisticated 
in catching the context information around the normal tissues, and 
the context information was sometimes crucial in medical images.  
Our model achieved 0.96 IOU for the normal pixels and 0.801 for 
the cancer pixels, with a mean IOU of 0.881. We then extended 
our basal cell carcinoma segmentation model to slide level basal 
cell carcinoma classification model by calculating the number of 
predicted positive pixels with respect to the input image. 

Figure 1: Segmentation of basal cell carcinoma. The left column is 
microscopic images. The middle column is our model predictions of 
basal cell carcinoma. The right column is the ground-truth labels.

 If the number of predicted positive pixels exceeded 0.5% of 
the total pixels of an image, we would classify the image as positive 
for basal cell carcinoma.  We obtained 96% accuracy of the slide 
level classification. Specifically, 65/65 images with basal cell 
carcinoma were correctly detected (100% sensitivity) and 55/60 
tumor-free images were correctly classified with 91.7% specificity. 
Furthermore, because the segmentation task was essentially a 
pixel level classification task, we provided pixel level classification 
analysis in this study.  We mainly analyzed the model by ROC and PR 
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curves. As shown in Figure 2, our model generated a near-perfect 
ROC curve with AUC= 0.99. (Figure 3) showed a PR curve of our 
model with ISO-F1 curve on the top. The PR curve described the 
trade-off between the positive predicted value (precision) and 

true positive rate (recall) of a binary classification using different 
probability threshold.  Similarly, we obtained 0.97 AUC for the PR 
curve despite that PR curve was a relatively stringent measure for 
the classification task. 

Figure 2: Receiver operating characteristic curve of the pixel level classification model. The area under the curve (AUC) of the classification model 
is 0.99.

Figure 3: Precision recall curve of the pixel level classification model with ISO F1 curve on the top. The area under the curve ( of the classification 
model is 0.97.

Discussion
This study has been designed to assess if deep learning models 

trained with digital images of frozen section slides acquired using 
mobile phones can have satisfactory performance so as to be 
deployed as a mobile app. A deep learning model based on the 
semantic segmentation was chosen. We employ the state-of-art 
Deeplab v3 [12] network with Xception [13] backbone for our 
segmentation task. Instead of using regular convolution layers, the 

Deeplab v3 adopts the astrous convolution layers, which provides a 
wider field of view but at the same computational costs.  In a similar 
fashion, the Xception network uses depthwise separate convolution 
layers. The advantage of this convolution is that it first performs 
a spatial convolution then follow by a depthwise convolution so 
that it has fewer parameters and thus it requires fewer operations 
to compute. The decision to downscale the images was due to the 
following two considerations. First, when pathologists make the 
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diagnosis of basal cell carcinoma, the judgement relies more on low-
magnification features than on high magnification features. Second, 
downscaling may make the feature mobile app run faster. There are 
two factors that may potentially adversely affect the performance 
of the model. First, it is reasonable to assume that images acquired 
by a mobile phone are of less quality in comparison to images 
acquired by the whole slide imaging technique. Second, the image 
quality of frozen section slides viewed through a microscope is 
in general less optimal than that of the permanent section slides 
sectioned from formalin-fixed and paraffin-embedded tissue. 
Despite these inherent disadvantages, the accuracy of classification 
at the slide level is 96%. While the false positive rate is 9%, the 
false negative rate is 0%.  In additions, the images were obtained 
by two different dermatopathologists at two different institutions, 
using different mobile phones. The staining characters of the frozen 
sections slides may vary from institution to institution. Taking all 
these into considerations, an accuracy rate of 96% seems to be 
quite satisfactory. It is conceivable that a model trained with more 
images and images from additional institution may improve both 
the accuracy and robustness of the model.

Conclusion
The output of the model delineates the area on the slide that 

is interpreted by as basal cell carcinoma. A pathologist can then 
further scrutinize the area to ensure that basal cell carcinoma 
is not missed in these areas. the results of our feasibility study 
indicate that the deep learning model built on frozen section 
images acquired using a mobile phone can potentially be deployed 
as a mobile app to provide real-time assistance to the pathologists 
interpreting frozen section slides for the evaluation of the margin 
status of basal cell carcinoma excision.
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