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Abstract

Background: Margin assessment of basal cell carcinoma using the frozen section is a common task of pathology intraoperative consultation.
Although frequently straightforward, the determination of the presence or absence of basal cell carcinoma on the tissue sections can sometimes be
challenging. We explore if a deep learning model trained on mobile phone-acquired frozen section images can have adequate performance for future
deployment.

Materials and Methods: One thousand two hundred and forty-one (1241) images of frozen sections performed for basal cell carcinoma margin
status were acquired using mobile phones. The photos were taken at 100x magnification (10x objective). The images were downscaled from a
4032x3024 pixel resolution to 576x432 pixel resolution. Semantic segmentation algorithm Deeplab V3 with Xception backbone was used for model
training.

Results: The model uses an image as input and produces a 2-dimensional black and white output of prediction of the same dimension; the
areas determined to be basal cell carcinoma were displayed with white color, in a black background. Any output with the number of white pixels
exceeding 0.5% of the total number of pixels is deemed positive for basal cell carcinoma. On the test set, the model achieves area under curve of 0.99
for receiver operator curve and 0.97 for precision-recall curve at the pixel level. The accuracy of classification at the slide level is 96%.

Conclusions: The deep learning model trained with mobile phone images shows satisfactory performance characteristics and thus demonstrates
the potential for deploying as a mobile phone app to assist in frozen section interpretation in real time.
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Abbreviations: I0U: Intersection-Over-Union; ROC Curve: Receiver Operating Characteristic curve; AUC: Area Under the ROC Curve; ASSP: Atrous
Spatial Pyramid Pooling; TP: True Positive; FP: False Positive; FN: False Negative

Introduction

. . . can be judiciously used intraoperatively to determine the margin
Basal cell carcinoma is the most common skin cancer - ) ) ) o
. L . o . status of the excision, particularly for the lesions in the critical
worldwide and continuing to increase in incidence [1]. Surgical i ) ] o
. . . anatomical sites such as the nose, cheeks, eyelids, chin, lips and
excision is a common modality of treatment and the frozen section
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forehead [2]. For these locations, a persistent/recurrent disease
from an incomplete primary excision would demand a far more
aggressive and disabling secondary surgery [2]. Deep learning
models trained with microscopic images have been used to detect,
classify and grade cancers with promising results [3-12]. Most of
the studies used digitized images obtained from the permanent
sections derived from formalin-fixed and paraffin-embedded tissue,
acquired using the whole slide imaging technique. Although the
interpretation of the presence or absence of basal cell carcinoma
on the frozen section slides are straightforward most of the time, it
can sometimes be challenging. We seek to explore if a deep learning
model trained on mobile phone-acquired frozen section images can
have adequate performance for its future deployment as a mobile

phone app for real-time assistance to the pathologists.
Materials and Methods

One thousand two hundred and forty-one (1241) images
of frozen sections performed for basal cell carcinoma margin
status was acquired using two different mobile phones by two
dermatopathologists (JWZ and J]JY) from their institutions. The
photos were taken at 100x magnification (10x objective). Five
hundred ninety-eight (598) images contain basal cell carcinoma
and 643 images are negative for basal cell carcinoma. These images
were randomly partitioned into the training set (1,116 images)
and the test set (125 images), with each set containing a similar
proportion of images with or without basal cell carcinoma.

The images were downscaled from a 4032 x 3024-pixel
resolution to 576 x 432-pixel resolution. Semantic segmentation
algorithm Deeplab V3 [12] with Xception [13] backbone developed
by Google was used to train our model. The weights were pre-trained
on PASCAL VOC 2012 and fine-tuned with our own dataset. In this
study, the Atrous Spatial Pyramid Pooling (ASPP) rate was (6,12,18)
and the output stride was 16. We used Adam optimizer with an
initial learning rate of 1E-3 and sigma of 1E-8. The performance
of the trained model was evaluated by the following metrics. Mean
I0U (Jaccard Index) is the average 10U over all classes. The 10U for
each class was defined as follows:

I0U = TP / (TP + FP + FN)

To further evaluate our segmentation model, we also reported
the pixel level receiver operating characteristic curve (ROC) and
precision-recall (PR) curve. Image level basal cell carcinoma
classification was performed by calculating the number of positive
pixels in each model outputs with respect to the input image. A

threshold of 0.5% was used.

Results

Our deep learning model on basal cell carcinoma achieved
satisfactory results (Figure 1A-1E) showed the original image, our
model classification and ground-truth labeling respectively from
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the leftmost to the rightmost for selected examples. As shown, our
model prediction identified the overall shapes and locations of
the lesions in most images in the test set. In some locations the
prediction could be coarse, which might have resulted from the
coarse ground-truth labels in our dataset (Figure 1A) showed a
high-quality segmentation output that largely overlapped with
the ground-truth label (Figure 1E) showed a representative image
with false positive prediction. The possible reason for this might be
because the convolution neural networks were less sophisticated
in catching the context information around the normal tissues, and
the context information was sometimes crucial in medical images.
Our model achieved 0.96 10U for the normal pixels and 0.801 for
the cancer pixels, with a mean 10U of 0.881. We then extended
our basal cell carcinoma segmentation model to slide level basal
cell carcinoma classification model by calculating the number of

predicted positive pixels with respect to the input image.

Figure 1: Segmentation of basal cell carcinoma. The left column is
microscopic images. The middle column is our model predictions of
basal cell carcinoma. The right column is the ground-truth labels.

If the number of predicted positive pixels exceeded 0.5% of
the total pixels of an image, we would classify the image as positive
for basal cell carcinoma. We obtained 96% accuracy of the slide
level classification. Specifically, 65/65 images with basal cell
carcinoma were correctly detected (100% sensitivity) and 55/60
tumor-free images were correctly classified with 91.7% specificity.
Furthermore, because the segmentation task was essentially a
pixel level classification task, we provided pixel level classification
analysis in this study. We mainly analyzed the model by ROC and PR
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curves. As shown in Figure 2, our model generated a near-perfect
ROC curve with AUC= 0.99. (Figure 3) showed a PR curve of our
model with ISO-F1 curve on the top. The PR curve described the
trade-off between the positive predicted value (precision) and
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true positive rate (recall) of a binary classification using different
probability threshold. Similarly, we obtained 0.97 AUC for the PR
curve despite that PR curve was a relatively stringent measure for
the classification task.
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Figure 2: Receiver operating characteristic curve of the pixel level classification model. The area under the curve (AUC) of the classification model
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Figure 3: Precision recall curve of the pixel level classification model with ISO F1 curve on the top. The area under the curve ( of the classification

Discussion

This study has been designed to assess if deep learning models
trained with digital images of frozen section slides acquired using
mobile phones can have satisfactory performance so as to be
deployed as a mobile app. A deep learning model based on the
semantic segmentation was chosen. We employ the state-of-art
Deeplab v3 [12] network with Xception [13] backbone for our
segmentation task. Instead of using regular convolution layers, the

Deeplab v3 adopts the astrous convolution layers, which provides a
wider field of view but at the same computational costs. In a similar
fashion, the Xception network uses depthwise separate convolution
layers. The advantage of this convolution is that it first performs
a spatial convolution then follow by a depthwise convolution so
that it has fewer parameters and thus it requires fewer operations
to compute. The decision to downscale the images was due to the
following two considerations. First, when pathologists make the
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diagnosis of basal cell carcinoma, the judgement relies more on low-
magnification features than on high magnification features. Second,
downscaling may make the feature mobile app run faster. There are
two factors that may potentially adversely affect the performance
of the model. First, it is reasonable to assume that images acquired
by a mobile phone are of less quality in comparison to images
acquired by the whole slide imaging technique. Second, the image
quality of frozen section slides viewed through a microscope is
in general less optimal than that of the permanent section slides
sectioned from formalin-fixed and paraffin-embedded tissue.
Despite these inherent disadvantages, the accuracy of classification
at the slide level is 96%. While the false positive rate is 9%, the
false negative rate is 0%. In additions, the images were obtained
by two different dermatopathologists at two different institutions,
using different mobile phones. The staining characters of the frozen
sections slides may vary from institution to institution. Taking all
these into considerations, an accuracy rate of 96% seems to be
quite satisfactory. It is conceivable that a model trained with more
images and images from additional institution may improve both
the accuracy and robustness of the model.

Conclusion

The output of the model delineates the area on the slide that
is interpreted by as basal cell carcinoma. A pathologist can then
further scrutinize the area to ensure that basal cell carcinoma
is not missed in these areas. the results of our feasibility study
indicate that the deep learning model built on frozen section
images acquired using a mobile phone can potentially be deployed
as a mobile app to provide real-time assistance to the pathologists
interpreting frozen section slides for the evaluation of the margin
status of basal cell carcinoma excision.
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