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Abstract

Hypoxic pulmonary hypertension (HPH) is a severe and progressive disease characterized by pulmonary vascular remodeling, increased
pulmonary vascular resistance, right ventricular hypertrophy and, if not reversed, death. We maintained laboratory rats at two altitudes (2261 and
4300 meters, 75.2% O, and 58.5% 0,) on the Qinghai Tibetan Plateau and measured the changes in mean pulmonary pressure (mPAP) over two
months. In the first month mPAP increased by 30 mmHg, while in the second month mPAP returned to normal. We hypothesized that the secondary
decrease in mean pulmonary artery pressure was associated with the production of vasodilators, decreased cardiac output, and genes involved in

adaptation to higher altitudes, including EGLN1, PPARa and HIF-2a.

Keywords: High Altitude; Pulmonary Arterial Hypertension; Altitude Acclimatization

Abbreviations: HPH: Hypoxic Pulmonary Hypertension; mPAP: Mean Pulmonary Pressure; PVR: Pulmonary Vascular Resistance; RV: Ultimately
Right Ventricular; HREs: Hypoxia Response Elements; SN: Single Nucleotide Polymorphism; RV: Right Ventricle; NO: Nitric Oxide; SNP: Single
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Introduction

The Qinghai Tibet Plateau is one of the most extreme
environments for human beings to live in, with an average altitude
of over 4000 meters. There are about 140 million residents living
on the plateau [1,2]. In addition, many visitors and tourists reach
plateau altitudes due to tourism, physical training, national defense
and trade contacts. In 2019, the number of tourists to Qinghai and
Tibet will reach 50.8 million and 23.37 million people according to
the Qinghai Provincial Cultural Tourism Bureau. Exposure to high-
altitude can cause acute or chronic mountain sickness [3]. Hypoxic
pulmonary hypertension (HPH) is a chronic mountain sickness
with pulmonary vascular function and structure changes caused

by hypoxia (with a prevalence of up to 18%) [4,5] with a mean

pulmonary artery pressure >30 mmHg at rest, which leads to the
increased mean pulmonary arterial pressure (mPAP), pulmonary
vascular resistance (PVR), and ultimately right ventricular (RV)
heart failure and death [6,7]. We carried out experiments with
laboratory rats in Maduo County, Qinghai Province, for two months,
where the average altitude is more than 4300 meters. Right
ventricular pressure and mPAP were measured by right cardiac
catheterization. The results showed that the mPAP of these rats
increased to 30mmHg, providing a model for pulmonary arterial
hypertension in rats. However, after a second month the mean
pulmonary arterial pressure returned to normal, indicating that the

rats had adapted to the high altitude. Recently specific genes and
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proteins have been identified as being important adapting to high
altitudes for Tibetans and animals which have lived at high-altitude
for prolonged periods. Elevated expression of EGLN1, PPARa and
HIF-2a (EPAS1) in Tibetans and animals such as yaks and Tibetans
sheep may help people and animals to survive in the high-altitude
hypoxic environments [8-12].

The EGLN1, gene encodes for HIF-proline hydroxylase 2 (PHD2)
and plays an important role in the HIF pathway as an oxygen sensor
[13]. In recent years, studies have shown that EGLN1 demonstrate
strong positive selection in people adapted to high-altitude hypoxia
environments. HIF named hypoxia-inducible factors, it is a kind of
nuclear protein that regulates transcription activity. HIF is an o/f8
elements (HREs) at target gene loci under hypoxic conditions
and is involved in pulmonary vascular remodeling under hypoxia
conditions and plays a central role in the occurrence of hypoxic
pulmonary hypertension. It mediates transcription responses
to hypoxia by regulating a number of genes involved in different
pathways, including erythropoiesis, angiogenesis and glycolysis,
thereby regulating the cellular oxygen content [14-18]. Although
HIF-1 and HIF-2 can transcribe activate many of the same genes,
they differ in their responses to hypoxia [19,20]. HIF-1a represents
the acute hypoxia response, while HIF-2a/EPAS1 plays role in
chronic hypoxia exposure through several genes involved in
the cellular and systemic hypoxia response. EPAS1 encodes the
hypoxia induction factor HIF-2, a transcription factor involved in
the hypoxia response. EPAS1 has a single nucleotide polymorphism
(SNP) at the beginning of the sixth exon. This SNP marks the
location of splicing variant of alternative splicing of EPAS1 mRNA,
which is expressed by humans at high altitudes. Humans living
at high-altitude by activating a series of compensatory reactions
occur in the respiratory system, sympathetic nervous system,
cardiovascular system, central nervous system and blood system
to alleviate the symptoms of hypoxia, a process known as high-
altitude acclimatization [21,22]. The current scientific studies
have shown that circulating metabolites of NO and NO derived in
the lungs are significant factors for high-altitude adaptation [23].
In addition, nitric oxide (NO), an endothelium-derived vascular
dilatation factor, can directly dilate blood vessels and maintain
stable pulmonary circulation [24,25]. The vascular endothelium is
the main site for the synthesis of NO, and endothelial nitric oxide
synthase is the specific enzyme involved. Endogenous NO produced
by endothelial nitric oxide synthase plays an important role in
the relaxation of vascular tension [26]. In endothelial cells, nitric
oxide (NO) as a major signaling molecules regulating pulmonary
vasodilation, it is produced by endothelial nitric oxide synthase
(eNOS) and triggers the soluble guanosine cyclase in vascular
smooth muscle to produce cGMP, thus promote vasodilation [21,27-
30] eNOS is mainly distributed in endothelial cells and circulating

blood cells. In the cardiovascular system, eNOS is a regulator of
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blood flow, leukocyte adhesion and migration, and an inhibitor of
platelet activation and aggregation [30]. Some studies indicate that
hypoxia exposure increases the activity and expression of eNOS
[21].

As previously mentioned, these are all possible reasons for the
decrease in mean pulmonary artery pressure. To determine if these
factors played arole in the decrease in mPAP in rats after acclimation
to high altitude, we looked at the expression of eNOS, EGLN1 and
HIF-2a and at the expression of BNP and ApoAS5 to evaluate cardiac
function. Patients with pulmonary arterial pressure, symptoms
of right ventricular hypertrophy, right ventricular failure, and
even death are caused by pulmonary arterial pressure overload,
so RV failure is a major determinant of survival in HPH [31,32].
Active B-type natriuretic peptide (BNP) and the functionally
inert N-terminal prohormone of BNP (NT-proBNP) are clinical
biomarkers extensively used in PAH and heart failure and are used
to evaluate cardiac function [33-35]. Apolipoprotein AV (ApoAS5),
a kind of the ApoA protein, is a key factor in regulating plasma
triglyceride [36,37]. Research has shown that overexpression
ApoAS alleviates RV failure caused by pulmonary hypertension and
inhibit the fibrosis of RV [31].

Materials and Methods

Animals

Twenty-four male Sprague-Dawley (SD) rats (specific pathogen-
free; 140-180g) were obtained from the Animal Experimental
Center of Xian Jiaotong University (Xian, China;) and were housed
in a room with a 12 h dark-light cycle at 22 + 2°C and relative
humidity at 45-65%. Animal studies were approved by the Medical
Ethics Committee of Qinghai Provincial People’s Hospital (PHQP-
181102-01). Food and drinking water were provided ad libitum.

Experimental Design

Animals were randomly divided into 4 groups (n=6 per group):
two middle altitude groups (2261 meters) maintained for 30 days
(Group A) or 60 days (Group B); and two high-altitude groups (4300
meters) maintained for 30 days (Group C) or 60 days (Group D).

Hemodynamic Measurements

At the end of the experimental periods the rats were
anaesthetized with pentobarbaital sodium (i.p., 30mg/kg) and
body weight was recorded. The mean pulmonary arterial pressure
(mPAP) was determined by right cardiac catheterization. The right
ventricle (RV), left ventricle (LV) and interventricular septum (S) of
each rat was separated at the ventricular septal edge. The weight
was measured for each rat and was used to determine the right
ventricle index (RV/LV+S, RVHI) [38-40].
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Tissue Harvest and Histomorphology

Assay At the end of experiment, the lung, liver, kidney and
heart tissues were collected and fixed in 4% paraformaldehyde
for 2 days, followed by dehydration with gradient alcohol, paraffin
embedding and sectioning. Morphological changes were observed
with an optical microscope (RX50, Ningbo Shun-yu Instrument Co.
LTD, Ningbo, China) using hematoxylin & eosin (H&E) staining.

Real Time Quantitative PCR Analysis

Total mRNA from the lung, liver, kidney and heart were isolated
using a total RNA extraction reagent (YESEN, Shanghai, China)
following the manufacturer’s protocol. The TRIeasyTM Total RNA
Extraction Reagent (YESEN, Shanghai, China) and the Hifair 1%
Strand cDNA Synthesis SuperMix (YESEN, Shanghai, China) with
gPCR. SYBR Green Master Mix (YESEN, Shanghai, China) were used
on an ABI-7900HT system (Applied Biosystems, USA) for real-time
quantitative PCR (RTqPCR). mRNA levels were calculated using the
comparative Ct method (AACt) after normalization to GAPDH. The
primers used for RTqPCR in this study were as the follows: HIF-2a

(forward

primer:5’-TCACTCATCCTTGCGACCAC-3', reverse
primer:5’-CAGGTGGCCGACTTAAGGTT-3"); EGLN1(forward
primer:5'-AGGGCTAACGCTAATCACCT-3’, reverse
primer:5’-TTGTTGTCTTGAGACGCAGC-3'); eNOS (forward
primer:5'-CCCAGGAGAGATCCACCTCA-3', reverse
primer:5’-CGGAAGGGTGCAATACCAGT-3"); ApoA5 (forward
primer:5'-CACTCCCGTGGCTTCTAGTG-3’, reverse
primer:5’-GGACTGGCGAGCCTTAGTTT-3"); VEGF (forward
primer:5’-GCAGCGACAAGGCAGACTAT-3', reverse
primer:5’-GAGGGAGTGAAGGAGCAACC-3"); BNP (forward

primer:5’-AGTCTCCAGAACAATCCACGATGC-3’, reverse
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primer:5'-CCGGAAGGCGCTGTCTTGAG-3"); TGF-BR (forward
primer:5’- GCGATCTAACCTGTTGCCTGTG-3’, reverse

primer: 5'-GGGCCATGTATCTCGCTGTTC-3"); GAPDH (forward
primer:5’-AATGGTGAAGGTCGGTGTGAAC-3', reverse

primer:5'-AGGTCAATGAAGGGGTCGTTG-3").

Statistics Methods

All results were performed by using SPSS (version 20.0)
software and presented as mean + standard deviation (SD). One-way
analysis of variance (ANOVA) was applied to determine statistical
significance. Pair comparison between groups was analyzed
by LSD-t test, and Dunnett’s method was used to analyze when
the variance was uneven. The data were considered statistically
significant when p-value < 0.05.

Results

Changes in Pulmonary Hemodynamics and Ameliorated Right
Ventricle Remodeling in PAH Rats The mPAP and RVHI in the group
C increased significantly as compared to the group A, (P<0.05,
(Figure 1A &1B) indicating that a PAH models was established.
The mPAP and RVHI in the group D decreased markedly when
compared to group C (P<0.05) (Figure 1A & 1B). Comparing group
A to group B, the mPAP and RVHI were no significant difference.
The mPAP and RVHI were in normal range at the middle altitude.
The Pathological Changes in Hypobaric Hypoxia-induced PAH Rats
The middle-altitude 30-day group showed normal structure and
morphology of the lung, liver, kidney and heart as determined by
H&E staining (Figure 2A-2D). However, in the second month, the
middle altitude group pulmonary artery medial thickness and
RVHI values increased (Figure 2A), but the liver, kidney and heart
tissue showed normal structure and morphology (Figure 2B-2D).
Compared to the middle altitude group in the first month, the high-
altitude group 1 showed increased pulmonary artery thickening

with proliferation of intermediate smooth muscle cells.
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Figure 1: mPAP (A) and RVHI (B) of rats in the middle and high elevation groups. *P < 0.05
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The middle altitnde
(30 days)

(60 days)

The middle altitude  The high altimde  The high altitude

(30 days) (60 days)

(D) heart.

Figure 2: H&E staining of the main organs in the different groups (400%). Representative images are shown in (A) Lung, (B) liver, (C) kidney and

The alveolar septum was broken and hemorrhaging was
evident (Figure 2A), the arrangement of hepatocytes was
disordered, some sinusoidal hemorrhage was evident, and the
central venous congestion was severe (Figure 2B). In the kidney
the glomerular basement membrane was thickened, and renal
tubular epithelial cells were oedema with vacuolar degeneration
(Figure 2C), the renal tubular lumen was dilated. The myocardial
fiber boundary was not clear, the myocardial fiber arrangement
was disordered and hemorrhage was readily evident (Figure 2C).
Upon comparison of the two high-altitude group (1 and 2) showed
that with the extension of time, the wall of pulmonary arterioles
gradually thickened, and the proliferation of intermediate smooth
muscle cells was obvious, hemorrhage was considerable with
inflammatory cell infiltration (Figure 2A). Congestion of hepatic
sinuses and central veins was also considerable and hemorrhage
was more serious at 60 days than at 30 days (Figure 2B).

The kidney glomerular basement membrane gradually
thickened, renal tubular epithelial cells became edematous, renal
tubular epithelial cells demonstrated visible cytoplasmic vacuolar
degeneration, with considerable hemorrhage at 60 days, more
so than at 30 days (Figure 2C), there were obvious enlargement
of myocardial space, disordered arrangement, infiltration of
inflammatory cells and rupture of myocardial fibers (Figure 2D).
Real-time PCR analysis Real-time PCR was performed to quantify
mRNA levels of BNP, ApoAS5, eNOS, HIF-2a, EGLN1, VEGF and TGF-
1B. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served
as aloading control. Under altitude hypoxia, altitude adaptation can
include the expression of eNOS in lung and heart tissue. As shown

in Figure 34, in the lung tissue the expression of eNOS in the middle
altitude groups was significantly higher than that of the high-
altitude group during the first month and second months (p<0.05).
In the high-altitude groups and the middle altitude groups the
expression of eNOS in the second month was higher than the first
month. In the heart tissue, (Figure 3B) the expression of eNOS in
the high-altitude groups was significantly lower than the middle
altitude groups during the first month and second month (p<0.05).
In the high-altitude and middle altitude groups, in comparing the
expression of eNOS in first month and second month, the expression
of eNOS in the second months was higher than in the first month
(p<0.05). Rats exposed to high-altitude hypoxia for a prolonged
period may have elevated expression of genes that reflect altitude
adaptation. The expression of EGLNI and HIF-2a can reflect altitude
adaptability. In the lung tissue, the expression of EGLN1 (Figure 3C)
and HIF-2a (Fig.3D) in the high-altitude groups was significantly
higher during the second month than in the first month. Expression
of EGLN1 in the high-altitude groups was significantly higher than
the middle altitude group (p<0.05). On the contrary, the expression
of HIF-2a (Figure 3D) in the high-altitude groups was lower than
that of the middle altitude groups.

In the kidney tissues (Figure 3E), the expression of EGLN1 in
the high-altitude group and the middle altitude group, during the
second month was higher than the first month (p<0.05). In the liver
tissues (Figure 3F), the expression of EGLN1 in the high-altitude
group and the middle altitude group, during the second month was
lower than in the first month (p<0.05). These results demonstrated
that when rats are exposed to low oxygen and high-altitude for a
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prolonged period elevated expression of EGLN1 may help the rats
better adapt to altitude hypoxia, which may be one of the reasons for
the decrease of average pulmonary artery pressure in rats during
the second month. In the lung tissue (Figure 3D), the expression
of HIF-2a in the high-altitude group 2 and middle altitude group 4
during the second month was higher than in the first month group
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(1 and 3). During the first month and second month, the expression
of HIF-2a in the high-altitude groups was lower than the middle
altitude groups. There was no obvious difference in the expression
of HIF-2a between the high-altitude group and the middle altitude

groups in the first and second month.
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Figure 3: Bar graph showing the results of relatived mRNA levels of eNOS in the lung (A) and heart(B) tissues. Relatived mRNA levels of EGLN1
in the lung(C), kidney(E), liver(F) and heart (J) tissues. Relatived mRNA levels of HIF-2a in the lung(D), liver(G), kidney(H) and heart(l) tissues.
Relatived mRNA levels of TGF-1B(K) and VEGF(L) in the lung tissue. Relatived mRNA levels of BNP(M) and ApoA5(N)in the heart tissue. *P<0.05.

In the liver (Figure 3G) and kidney tissues (Figure 3H), the
expression of HIF-2a in the high-altitude groups in the second
month was significantly higher than in the first month. In the
heart (Figure 3I), and kidney tissues (Figure 3H), in the first and
second month, the expression of HIF-2a in the middle altitude
groups was higher than the high-altitude group (p<0.05). In the
liver tissue (Figure 3G), the expression of HIF-2a in the middle
altitude group 3 was higher than the high-altitude group 1 during
the first month. On the contrary, in the second month, it was lower
than the high-altitude group. In the heart tissue (Figure 3]), during
the first and second month, the expression of EGLN1 in the middle
altitude groups was higher than the high-altitude groups (p<0.05),
there was no obvious difference expression of EGLN1 between the
first and second months (Figure 3]). These results demonstrated

that HIF-2a appears to play an important role in the adaptation to
hypoxia at high altitude. We found high expression of EGLN1, HIF-
2a and eNOS in the lung and heart tissues, these findings which
provided evidence that EGLN1, HIF-2a and eNOS may be the cause
of decreasing mean pulmonary arterial pressure. In lung tissue
during the first month the expression of TGF-1f (Figure 3K) in
the high-altitude group was significantly higher than the middle
altitude group (p<0.05), and in the second month it was lower than
the middle altitude group. There was no significant difference in
expression of TGF-13 between the first and second month in the
high-altitude groups. In the middle altitude groups the expression
of TGF-1pB during the second month was markedly higher than in
the first month (p<0.05). The expression of VEGF (Figure 3L) in
the high-altitude group and middle altitude group was higher in
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the second month than the first month (p<0.05). During the first
month, the expression of VEGF in the high-altitude group was lower
than the middle altitude group (p<0.05). In contrast, in the second
month expression in the high-altitude group was higher than
in the middle altitude group. These results showed that the high
expression of VEGF and TGF-18 in the lung tissue, demonstrate that
after long-term exposure to hypoxia at high-altitude is associated
with thickening of the vascular wall of lung tissue, vascular smooth
muscle hyperplasia and pulmonary vascular remodeling. In heart
tissue during the first month and second month the expression of
BNP (Figure 3M) in the high-altitude groups was lower than in the
middle altitude groups (p<0.05). The expression of BNP in the high-
altitude groups and middle altitude groups was significantly higher
in the second month than in the first month (p<0.05). During the
first month and second month, the expression of ApoA5 (Figure 3N)
in the high-altitude groups was lower than in the middle altitude
group (p<0.05). The expression of ApoAS5 in the high-altitude
and middle altitude groups in the second month was significantly
higher than in the first month (p<0.05).

Discussion

Chronic mountain sickness (CMS) is a

maladjustment to living at high-altitude and often occurs in people

symptom of

who live in areas over 3000m above sea level for a long time. CMS
is characterized by high-altitude polycythemia (HAPC) and hypoxic
pulmonary hypertension (HPH). In this study, we did Tibetan
Plateau field experiments (altitude about 4300m) to study HPH by
establishing a rat model of pulmonary hypertension. The rats were
maintained fed for 30 days and 60 days, after which we measured
mPAP and RVHI, mPAP increased in the first month but returned to
normal by the end of the second month. Therefore, we explored the
possible causes of this phenomenon. In our experiment, the HIF-2q,
EGLN1, eNOS, VEGE TGF-1f3, BNP, ApoA5 mRNA were detected by
gPCR. The results showed that in the lung and heart tissues, the
expression of eNOS in the second month was higher than that in
the first month.

This result demonstrates that prolonged exposure to high-
altitude will induce endothelial nitric oxide synthase (eNOS) and
increase NO, dilating pulmonary vessels and reducing pulmonary
vessel pressure. Nitric oxide (NO) as a major signaling molecules
regulating pulmonary vasodilation, it is catalyzed by endothelial
nitric oxide synthase (eNOS). NO activates guanosine cyclase which
catalyzes the concersion of guanosine triphosphate (GTP) into cyclic
guanosine phosphate (cGMP). cGMP activates cGMP-dependent
protein kinase (PKG), namely sGC /cGMP /PKG pathway, to reduce
intracellular calcium ion concentration and thereby vasodilate
pulmonary vascular smooth muscle [41,42]. We speculate that
the high expression of eNOS in rat lung and heart tissue after
prolonged altitude hypoxia contributes to the long-term survival in
the plateau area, and may be the reason for the decrease of mean
pulmonary artery pressure. The Qinghai Tibet Plateau is an inland
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plateau in Asia, the largest plateau in China and the highest in the
world. Research has found that people who live on the plateau can
adapt to the high-altitude environment, resulting in better aerobic
exercise ability, more effective oxygen transport efficiency, greater
resting ventilation, higher oxygen saturation, lower hemoglobin
level and lower pulmonary vasoconstrictive reactivity in an hypoxia
environment [43]. In recent years, genes have been identified in
Tibetans and yaks, which may help them better survive at high
altitude, including EPAS1/HIF-2a, EGLN1/PHD2, PPARa etc
[8,44,45]. In our study we found that the expression of EGLN1 and
HIF-2a in rats maintained at high-altitude was higher in the second
month than in the first month, suggesting a continuing adaption
to altitude hypoxia, and suggest that EGLN1 and EPAS1/HIF-2a
are significant genes involved in this hypoxia response. The latter
is related to positive regulation induced by hypoxia and is the key
regulatory factor of chronic hypoxia-related genes, and is involved
in the upstream regulation of EPO, VEGF and eNOS-related genes
[46].

EPAS1 is abundant in lung and placenta, which are the key
tissues for oxygen exchange between adult and fetus [47]. Some
studies have indicated that EPAS1 is related to the hypoxia induction
pathway, and the level of its expression can be significantly
increased in an hypoxia environment. NO is an effective vasodilator
and the key to its production is the enzyme eNOS, the transcription
of which has been shown to be induced by the interaction between
EPAS1-expressed HIF2 and two adjacent HRE sites on the heNOS
promoter [48]. EGLN1 and HIF- Proline hydroxylase 2 (PHD2)
expression was also up-regulated by hypoxia. Several recent
studies have shown that, due to the strong positive selection in the
high-altitude and low-oxygen environment adapted populations,
EGLNI, a regulatory gene of HIF, plays a key role in the regulation
of various subtypes of HIF, and becomes an important gene related
to altitude adaptation and hemoglobin concentration in various
plateau adaptation populations, including Tibetans. EGLN1 and
EPAS1/HIF-2a may contribute to the decrease in mean pulmonary

artery pressure.

When we compared the high-altitude group with the middle-
altitude group, we found that the expression of eNOS, EGLN1,
HIF-2a in the middle-altitude groups was higher than the high-
altitude groups. This finding is inconsistent with many other
relevant studies. We speculate that this may be related to the
different altitudes of rats, and perhaps the adaptability of rats at
different altitudes is also different. Further research is needed on
this issue. Cardiac function was evaluated by testing BNP, and the
results showed that the expression of BNP in the second month was
higher than in the first month. Combined with the results of HE
staining, it means that the heart injury in the second month is more
serious in both the high and middle-altitude groups. A high level of
BNP indicates poor cardiac function, as a result, the ability of the
ventricles to contract decreases, reducing cardiac output into the
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pulmonary artery, thereby reducing pulmonary vascular resistance.
So even though mean pulmonary artery pressure decreased in
the rats, the damaged to the heart eventually led to death. We
measured ApoA5 levels and the results showed that the expression
of ApoAS5 in the second month was higher than the first month.
The overexpression of ApoA5 has been shown to alleviates PAH
and RV failure and inhibit the fibrosis of the RV. [31]. However, our
results showed that high expression of BNP was also accompanied
by high expression of ApoAS5, indicating that protective factors and
damage factors are both expressed. Combined with H&E staining,
we speculated that the expression of injury factors might be
higher than that of protective factors, which needs to be further
studied. TGF-BI is a multifunctional cytokine that regulates cell
growth, differentiation and proliferation in vivo [49] TGF-f8 can
inhibit the expression of phosphatase and tensinophilic deleted
on chromosome 10 (PTEN) and promote pulmonary vascular
remodeling and thickening [50]. The expression of TGF-f in rats
exposed to hypoxia increased significantly. VEGF plays a protective
role in early PAH. The increase in VEGF in hypoxia tissue promotes
angiogenesis, which is beneficial for the body to adapt to a hypoxia
environment and ensures that oxygen and nutrients are delivered
to hypoxia cells [51-53]. Under a hypoxia environment, the hypoxia
response element in the VEGF gene promoter directly participates
in pulmonary vascular remodeling by stimulating HIF-1a and a
complex signal transduction pathway, which leads to an increase in
pulmonary arterial pressure. Our results show that the expression
of VEGF and TGF-3 were both increased. This indicates thatalthough
the mean pulmonary artery pressure of the rats decreased at the
second month, the proliferation of pulmonary vascular endothelial
cells induced vascular proliferation.

Conclusion

In this study, we explored the possible causes of the decrease
in mean pulmonary artery pressure after prolonged hypoxia in
rats, but we were not able to determine which factor or pathway
was responsible for the decrease. Our experiment lasted for two
months, and we found that the average pulmonary artery pressure
decreased at two months after being elevated at one month. Longer
term studies are needed to understand this phenomenon.
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