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Introduction

Telemedicine is an emerging tool that enables clinicians 
to provide direct patient care at a distance by leveraging 
telecommunication information technology [1]. The recent 
worldwide spread of the COVID-19 pandemic has highlighted 
the necessity to develop reliable monitoring devices capable of 
analyzing physio pathological parameters directly at home. This 
necessity is not only related to patients with COVID-19 disease, but 
also to all those patients with chronic diseases that show difficulties 
to be followed up and treated in hospital, due to risk of infections 
during hospitalization and difficulties to reach the appropriate care 
centers. To this end, wearable sensors used as medical devices that 
can continuously collect data from the human body are becoming 
more and more widespread. Their high flexibility, together with the  

 
non-invasive measures and simple way of utilization for patients 
leads to possible applications as physical activity monitoring and 
personalized healthcare [2]. Cystic Fibrosis (CF) is a congenital 
disease which manifestations appears since intrauterine life and 
generally at the birth. It is inherited as an autosomal recessive 
manner. CF is characterized by chronic and progressive symptoms 
with a multiorgan localization [3].

Cystic Fibrosis Conductance Regulator (CFTR) is the disease-
gene of CF, located on Chromosome 7, encoding a protein largely 
expressed in epithelial cells, which has the role of regulating the 
chloride efflux across the cellular membrane. About 2103 mutations 
are described in CFTR gene leading to protein degradation, protein 
misfunctions or protein mis localization [4]. Protein defects or 
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insufficient CFTR transcript amounts are the cause of an alteration 
of the flow of sodium and chloride ions through cellular membrane, 
resulting in dense secretions accumulation obstructing epithelial 
ducts. A progressive respiratory system impairment with chronic 
inflammation and specific bacterial colonization is the main cause 
of death about CF patients [5]. Psychological and social impairments 
as well as depression and anxiety symptoms are described in 
adults and adolescents with CF [6] and reflects the severity and the 
complexity of disease management.

In the last decades, a multidisciplinary approach for therapies 
have significantly improved both the life quality and life expectancy 
in CF patients. Frequent disease exacerbations are strictly associated 
with a diffuse sedentary lifestyle among CF patients, partly 
determined by impaired muscle function and malnutrition and the 
lung disease that led to a reduced exercise tolerance [7]. Due to the 
complexity of each patient’s health status, exercise interventions 
could be continuously monitored, but also associated to mucus 
clearance techniques. Regular exercise is highly recommended in 
the care guidelines for CF patients, for the capacity of reduce mucus 
stagnation enhancing pulmonary functions, but also because it can 
produce an overall health state reducing anxiety and depression 
episodes and increasing sleep quality [8].

Last Advances in Telemedicine for Cystic Fibrosis

Recently, the COVID-19 pandemic has determined an increase 
of telemedicine and tele-health interventions for CF patients. 
Wearable activity monitors have been increasingly adopted to 
record data related to physical activity, such as heart rate, step 
count, distance traveled, elevation climbed and estimated energy 
expenditure, but also to monitor the variations of the quantity 
of electrolytes in sweat. Due to easily accessible collection and 
electrolytes composition, human sweat can reflect individual’s 
physiological state, and thus represents an attractive target for 
wearable sweet sensors [9,10]. Tomlinson and colleagues have 
observed successful interventions in monitoring via Skype calls 
exercise training of nine CF patients [11]. Wrist-worn activity 
monitors, using optical sensing technology to detect variation of 
blood volume in microvascular tissue, had controversial accuracy 
in literature if compared with golden standard technique for 
detection of heart rate during high intensity exercise [12,13]. Other 
studies had observed accuracy and low cost of technology for chest 
straps heart rate monitors worn during physical activity in healthy 
population [14] and CF population [15].

Another example of telemedicine is provided by the increasing 
number of programs based on imaging with digital fundus 
cameras and remote interpretation, which has made screening for 
retinopathy large populations associated with diabetes possible 
[16]. The advances in Artificial Intelligence (AI) and telemedicine 

have the potential to increase the accuracy, reduce the costs and 
extend the reach of screening, in the same way of glaucoma 
screening, using optic disc photographs and/or optical coherence 
tomography. This could indeed represent a cost-effective way to face 
glaucoma in populated nations like China and India, where most 
glaucoma cases still to remain undiagnosed [17]. Since physical 
activity plays an important role for the improving the quality 
of life for several chronic diseases, the development of Machine 
Learning methods capable of classifying human physical activity 
through data measured by on-body sensors such as accelerometers 
[18], heart rate monitors [19], a mix of accelerometers, cameras, 
GPS location and other sensors [20], becomes important in the 
determination of the appropriate physical activity needed to reduce 
the risks associated with chronic illness.

As far as CF is concerned, semi-automated devices which use 
audio and Electromygraphy (EMG) signals for cough detection were 
developed by [21]. Moreover, approaches based on AI techniques 
offer the possibility to correlate health state indicators and the 
type of physiotherapy exercise to be followed [22]. Artificial 
intelligence represents therefore a useful tool in determining 
the most appropriate physiotherapy. Not only, Zucker et al. Have 
recently shown that deep convolutional neural networks also 
facilitate Brasfield scoring of chest radiographies in patients with 
CF and thus the use of AI could also lead to important diagnostic 
improvements [23]. 

Conclusion

In conclusion, the use of AI can provide insights not only in the 
development of guidelines for choosing the best physical activity 
for CF patients, but it could also open new fields in diagnostics, 
enabling recognition of CF symptoms.
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