.o: American Journal of
S Biomedical Science & Research

Research Article

@www.biomedgrid.com

ISSN: 2642-1747

Copy Right@ Junheng Gao

Statistical Method for Development of Composite
Index in Clinical Research

Shein-Chung Chow!, Patty J Lee?, Junheng Gao'*, Rebecca ] Lee?, Justin ] Lee* and Ziv Soferman®

!Department of Biostatistics and Bioinformatics, Duke University School of Medicine, North Carolina

2Allergy & Critical Care Medicine, Duke University School of Medicine, North Carolina

3Brown University, Providence, USA.
‘Rutgers New Jersey Medical School, New Jersey

STel-Aviv Academic College of Engineering, Israel

*Corresponding author: Shein-Chung Chow, Patty ] Lee, Junheng Gao, Duke University School of Medicine, 2424 Erwin Road, Durham,

North Carolina.

To Cite This Article: Junheng Gao, Statistical Method for Development of Composite Index in Clinical Research. 2020 - 10(4). AJBSR.MS.ID.001538.

DOI: 10.34297/AJBSR.2020.10.001538.

Received: g October 06, 2020; Published: & October 15, 2020

Abstract

In clinical research, a medical predictive modelling is often performed using a multivariate set of risk factors to predict the performance of
clinical outcome for an effective disease management. Using a well-established and validated medical predictive model, our goal is to develop
a composite index of several dependent predictors to better inform the disease status and/or treatment effect with more accurate and reliable
assessments. In practice, since each of the multiple predictors may be positively or negatively and/or linearly or nonlinearly correlated to the
clinical outcome or response, an ideal composite index should be able to account for positively/negatively and/or linearly /non-linearly associations
with the clinical outcome or response. In this article, criteria and a statistical approach for development of an ideal composite index are proposed.
Under the proposed criteria and procedure, statistical methods are also derived. The proposed procedure for development of the composite index is

evaluated both theoretically and via a clinical trial simulation.
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Introduction

In clinical research, a medical predictive model is often estab-
lished using a multivariate set of risk factors (predictors). The pur-
pose of a medical predictive model is not only to predict the perfor-
mance of clinical outcome but also to provide valuable information
regarding disease management including prevention, accurate and
reliable diagnosis, and effective treatment of the diseases under
study. In practice, for building a medical predictive model with a
multivariate set of risk factors, a (logistic) regression analysis ap-
proach is often performed by the following steps: (i) identifying
potential risk factors (e.g., demographics or patient characteristics)
by determining associations between the potential risk factors and

the response, (ii) testing for co-linearity among the identified risk

factors, (iii) performing predictive model fitting with the identified
predictors, (iv) performing goodness-of-fit of the fitted model, and
(v) validating the developed medical predictive model [1]. In ad-
dition, generalizability of the medical predictive model should be

examined for the purpose of external validation.

A well-established and validated medical predictive model
upholds sparse predictors, particularly when these predictors are
highly correlated with (dependent on) one another. Therefore, the
principle investigator will try to integrate multiple predictors into
a single predictor that informs the disease status and/or treatment
effect while upholding accuracy and reliability [2]. Since each of the

multiple predictors may be positively or negatively and/or linearly
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or nonlinearly correlated to the clinical outcome or response, an
ideal composite index should be able to account for positive/neg-
ative and/or linear/non-linear associations with the clinical out-

come.

Similar to statistical methods used for characterizing calibra-
tion (standard) curves in lab-based assays, we will develop an ideal
composite index using similar criteria and corresponding methods.
For example, we propose that an ideal composite index should be of

the format: Xlaxg ,where X; and X, are identified, highly correlat-
ed risk factors/predictors. Next, a procedure for the development
of the ideal composite index, based on a multiple regression analy-
sis model, is proposed. Under the multiple regression analysis mod-
el, statistical methods are derived accordingly. The criteria, process,
and statistical methods are evaluated both theoretically and via a
simulation study.

The remainder of this article is organized as follows: Section 2
will briefly introduce the concept of an ideal composite index, using
examples from existing clinical research, and propose an innovative
procedure for the development of an ideal composite index in clin-
ical research; Section 3 will derive the statistical methods; Section

4 will apply the proposed to composite index in a simulation study.

Development of a Composite Index

Under a well-established medical predictive model, it is com-
mon to see that these predictors may be dependent on, or somehow
correlated to one another in a linear/nonlinear and/or positive/
negative fashion.

Ideal Composite Index
Ipg=I_((x_p:x_q))= &(Xp, Xg)
Let [, = I(xp;xq) = g(xp, xq) be the composite index of

X,and X, where X, and X, are identified and highly correlated

predictors which are relevant to clinical outcome and g is a utility

function that combines Xp and xq . The goal of the ideal compos-
ite index is to identify the utility function g such that the developed

index can account for positive/negative and/or linear/non-linear

associations between each of the predictors (i.e., xp and xq ) and
the clinical outcome.

In practice, the selection of function g depends upon the rela-

tionship between the clinical outcome and each of the predictors

(e, xp and xq ). For this purpose, we may consider the selec-
tion of a standard curve or calibration curve in the development

and validation of an analytical method in laboratory testing. Let y
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be the amount of drug recovered (% of label claim) and x be the
standard concentration. A standard curve or calibration curve is of-

ten determined based on the model fitting between }; and X;,
where i=1,.,n. In assay development and validation, the following

four models are commonly considered:

Model 1: y = 8, + f1x + €;
Model 2: y = ;x + ¢€;
Model 3: y = ByxP1e;
Model 4: y = B,efr*e.

Model 1 is linear with a non-zero intercept, while Model 2 is
linear without an intercept. Model 3 and Model 4 are non-linear
but can be linearized by taking the logarithm. Based on the consid-
eration that an ideal composite index should be able to account for

positive/negative and/or linear/non-linear associations between

each of the predictors (i.e., Xp and xq) and the clinical outcome
(y), we propose selecting the utility function g as follows
— _ _a b
[pq - I(x,,,xq) - g(xp’xq) =Xty
Example 1 - In clinical research, the above proposed composite
index is commonly seen in practice. A typical example is the devel-
opment of body mass index (BMI). As indicated in BMI [3], the BMI

was first discussed by Quetelet in his published research work on
the weight of men at different ages in 1832. BMI serves as a medical

predictive model for obesity, and uses the two predictors of xp =

weight (kg) and xq = height (m)]. In this case, BMI is given by

_ Weight

_ . . 2 _ a b _ 2
= (Height’ =Weight(Height)™ = x,x, =x X,

where a=1 and b=-2.

Most recently, Trefethen [4] proposed a new formula for com-
puting BMI as follows,

_ 1.3Weight

_ . NS Qb _ 25
= (Height =1.3(Weight)(Height) ™ =1.3x,x, =x,x,

where a=1 and b=-2.5.

The scaling factor of 1.3 was determined to make the new BMI
formula align with the traditional BMI formula for adults of average
height. The exponent of 2.5 is a compromise between the exponent
of 2 in the traditional formula for BMI and the exponent of 3 that
would be expected for the scaling of weight with height.

Example 2 - Consider QT interval prolongation for cardiotoxic-

ity. Let Xp = QT interval and Xq = heart rate (RR). Bazett [5] and
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Fridericia [6] proposed the following indices, which is a corrected

QT interval (denoted by QTC) adjusted for the square root of RR,
respectively:

_ QT _ _l_ a b _ -
OT.B=—F—=(QT)(RR) * =x,x, = xpxqz’

JRR

where a=1

and b=-1/2,
and
OTF = or _ (QT)(RR)% =xx’=x x%
c YRR "¢~ "r"¢ , where a=1 and b=-
1/3.

Note that QTCB (Bazett’s index) is widely used but may give

erroneous results at both slow and fast heart rates. QTCF (Frid-
ericia index) is also widely used and, compared to Bazett’s index,
may give more consistent results at fast heart rates.

Proposal for Development of a Composite Index

In the interest of minimizing predictors, especially when these
predictors are dependent on one another, and upholding generality,

we consider the development of a composite index based on two

confirmed predictors xp and xq, which are corrected for each

other. We propose the following steps for the development of an

ideal composite index by reducing a two-parameter (xp and xq )

problem to a single parameter (the composite index) problem.

Step 1. Establish and validate a medical predictive model. Let y
denote the clinical outcome/response (independent variable) and

xi’i = 1,----,Kbe the risk factors/predictors (dependent vari-

ables). Consider the following multiple regression model:
V,=Bx+Bx, ot Bx, e, j=1n,

where i’i = 1,----,K are regression coefficients and &; is
the random error term. Under the multiple regression model, a (lo-
gistic) regression analysis approach is often performed to (i) iden-
tify potential risk factors/predictors (e.g., demographics or patient
characteristics) by determining associations between the potential
risk factors/predictors and the response, (ii) test for collinearity
among the identified risk factors/predictors, (iii) build a medical
predictive model by fitting the clinical outcome/response with the
identified predictors, (iv) perform goodness-of-fit of the fitted mod-
el, and (v) validate the developed medical predictive model based
on some pre-specified performance criteria.
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Step 2. Under the established and validated medical predictive
model, obtain estimates of the regression coefficients of the two

predictors xp and xq, which we will develop into a composite

index accordingly.

Step 3. Obtain predicted values of y based on xp and xq as
ﬁpqi = ﬁpxpi + quqi!i = 1,...,n. Then, fit the mod-

o b
el ypq = x;xqg, which can be done by taking a [the?] logarithm
transformation. Consequently, estimates of a and b can be obtained.

The composite index based on xp and xq is obtained as

Statistical Method

Obtain Estimates of Regression Coefficients of Predic-
tors

Under Model (1). Without loss of generality, assume y and all

xi are standardized variables. Under standardized variables, the

mean and variance of the regressors are given by

_ 1 n , 1 n — 2
xizzzj':lxif:oand S, zgzj‘:l(xij_xi) =1

for i =1,....,K . Similarly, for the standardized variable of
clinical outcome response (dependent variable), we have

[ (e S .,
V=Y =0masy=—2 0 (v, =) =1
Suppose we are interested in developing a composite index for

two identified risk factors, namely xp and xq, where 1<p#q<K,

and xp and xq are known to be highly correlated in an unknown
format. However, under the standardized variables, the sample co-

variance between xp and Xq can be obtained as follows

1 <

1 < — —
Spq Zzzjfl(xpj —X,)(x,; —X,) :Z Xpi%yi

=1y

Similarly, sample covariance between ), and X is given by

1 <
S Z—E X V.
ly n j=1 A,
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As a result, sample correlation between xp and xq and X; and

y are given by respectively.

rq 22:Spqandrly: 22:S1y
5SS, 58,

In order to obtain estimates of ﬂp and P, consider rewriting

model (1) in the following matrix form

Y=Xpf+¢e (2)

where Y is the nx1 vector of dependent variables, X is the nxK
matrix of regressors, B is the Kx1 vector of regression coefficients,
and € is the nx1 vector of random error terms. Under model (2), the

ordinary least squares (OLS) estimator of {3 is given by
n -1
B=(X'X)"'X'Y
Based on standardized variables, ﬁ can be written as a func-

tion of their sample correlations. Denote by X; the Ith row of X.

Thus, the (p,q)th element of X ' X is given by

] _ n ' _ n _ _
(X X)pq - (Zj=1 xj-xj-)pq - Zj=1 XpiXep =S pg =Mpy
Furthermore, the p* element of X 'Y is
' _ n ' _ n _ _
(X Y)p - (Zj=1 xj-Y)p o Zj=1xpjyj NSy, =T,
Now, denote by 7, the sample correlation matrix of X . That
is, the KxK matrix whose (p,q) entry is equal to Vg Thus,
X'X= nr,. .Similarly, denote by 7y, the Kx1 vector whose pt
entry is equal to 7py . Thus, X'Y = nryy . This implies
n -1 -1
B=X"'X) XY =ryry 3)

The estimates of ﬂp and ﬂq are the p” and q" elements of [

Fitting the Model between Predicted Values and the

Composite Index

For the development of the composite index based on X, and
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xq , which are dependent on each other,

consider fitting the following multicaptive model between the
predicted values

Yo = ﬁpxpi + ﬂqxqi,l =1,.....,7 and the composite vari-

a b
able, xpxq.
= _ .a b
Vg = XpXe&s

or log(y,,) =alog(x,)+blog(x,)+log(&), whichis

equivalent to

)7;7[] = ax;, +bx;] +e,
where

¥, =log(y,.),x, =log(x,), x, =log(x,)and e = log(é).
Following the idea described in Section 3.1, estimates of aand b

can be similarly obtained.

Validation of the Developed Composite Index

We may validate the developed composite index by considering

how close an observed y, its predicted value ypq (obtained from

Vg = ﬁpxp + ﬁqxq) and the predicted values Ypq (obtained

from 37pq = ngg based on the fitted regression model dis-
cussed in the previous sections) are to one another. To assess the
closeness, we propose the following two measures, which are based
on either the absolute difference or the relative difference between

)71"1 and ypq:
Criterion . p; = P{|)7pq - 37M| < é‘},

Ipq—Ipq

Ypq

Criterion II. p, = P{

<5}
In other words, it is desirable to have a high probability that the

difference or the relative difference between }7pq and jlpq, given

by p,and p, respectively, is less than a clinically or scientifically
meaningful 8. Then, for either j = 1 or 2, it is of interest to test the
following hypotheses

Ho y22 Spo versus Ha D> Dy (4)
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where P, is some pre-specified constant. If the conclusion is

to reject Ho in favor Ha , then the developed composite index is
considered validated. The technical details of the test of hypothesis
corresponding to the two criteria can be found in Tse et al. [7].

Simulation Study

In the simulation study, we construct a composite index that
follows the similar modelling of body mass index with randomly

generated weight X, and height X, data. We examine three scenar-
ios at which predictive accuracy could be affected. Firstly, we run
the simulation for different sample sizes and compare the closeness
of developed composite index to the observed value. Secondly, we
analyse whether the correlation relationship between the predic-
tors will affect the predictive accuracy. Thirdly, we test under differ-

ent regression equations for observed };and X, , the estimation of

composite index V ,, is still consistent to the predicted values qu .

In each case, we generated observed values for weight X, and

height X, from bivariate normal distribution with correlation P
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=0.6. The mean of weight and height are 70 kg and 1.8m and vari-
ance are 15 and 0.15 respectively. Those values refer to the BMI his-
torical data reported in the National Health Examination surveys.
We assumed the true relationship between the clinical outcome

Y pgand therisk factorstobe y = 52+0.4-x +33. Xeight

weight
. We fitted the relationship between Y and X veight >
regression, and obtained the coefficient estimates and predictive

Xeight by linear

outcome Y = ﬁp “Xeight T ﬁq *Xpeighe - Then we applied the linear

model for log(y)=alog(x,,,, )+blog(x,,,,)and obtained

weight
the composite index as y= xli‘eight ’ xilgeight. Here our composite
index is analogous to the widely used BMI formulation. To test the
predictive power of the composite index, we run the simulation for
1000 times. The differences between V,,and )7pq under different

sample sizes, correlation coefficients, and combinations of 8 coeffi-
cients were summarized in Table 1.

" [¥pa = Fual Foa = Fog a b
Ypq )
1012 0.040 1034 2050
100 1.064 0.042 1032 2041
500 1.092 0.043 1032 2035
1000 1.098 0.043 1034 -2.036
10000 1.100 0.043 1033 2036
1
Seenario [ For different sample size n = 50, 100, 500, 1000, 10000,
P [¥pq pe = Fpa a b
~ Val Ypq
-0.9 1.005 0.039 1219 -2.041
-0.7 1.021 0.040 1132 -2.056
-0.5 | 1.034 0.040 1104 -2.058
-0.3 1.046 0.041 1.089  -2.056
-0.1 | 1.057 0.041 1077 -2.052
0.1 1.068 0.042 1068  -2.049
0.3 | 1.081 0.042 1055  -2.044
0.5 1.090 0.043 1.044 -2.04
0.7 | 1.105 0.043 1017 -2.031
0.9 1111 0.044 0915 -2.006
Scenario II: For different correlation p from -0.9 to 0.9 by 0.2 (n=1000).
By Bq |§w ~Vpal  [Fea ;vw a b
Ypa .
(L 1) 0.045 0.001 0.763 0.018
(1,5) 0.178 0.002 0.714 0.083
(1,10) 0324 0.003 0.661 0.153
(1,200 0.564 0.004 0577 0.265
2,-1) 0.039 0.000 0.883  -0.010
(2,-5) 0,188 0,001 0921 0034
(2,-10) 0.398 0.003 0873 0116
o (2,-20) 0902 0.007 1099 -0264
Seenario II: For different beta coefficients (n=1000).
Table 1: Evaluation of the Closeness between V,, =V,, .

As shown in Table 1, the estimation of the proposed compos-
ite index is not affected by the sample size. Even for small sample
size such as n = 50, the estimation is accurate and consistent. In

scenario I, the difference between .V, and V4 is minor for pro-

posed correlation between X, and X_. With higher correlation
coefficient, the difference becomes relatively smaller. For different
beta coefficients, the relative difference is robust while the absolute

difference has a minor trend of increase when response variable
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increases. Our results suggest the need to scale the risk factors or
leave aside the intercept term before applying the linear regression
model for the log-transformed variables.

Concluding Remarks

In this article, although the development of the composite in-
dex focuses on two dependent predictors, similar idea can be eas-
ily extended to develop a composite index combining more than
two predictors, which are correlated one another. In the multiple
regression analysis, the ordinary least squares (OLS) approach is
considered for obtaining the estimates of regression coefficients. In
practice, alternatively, we may consider weighted OLS (WOLS) for
adjustment if heterogeneity in predictors are present.

For simplicity and illustration purpose, we consider the predic-
tors xl.,i =1,...., K are of the same data type such as continuous

variable. In practice, however, X;,I = L...,K may be of differ-
ent data types (e.g., continuous, binary response, or time-to-event
data). In this case, the idea regarding the use of standardized vari-

ables as discussed in Chow and Huang [8] may be similarly applied.

An ideal composite index should possess the following advan-
tages. First, in the interest of parsimony of predictors, the devel-
opment a composite index reduces a multiple-parameter (e.g., two
predictors as discussed in this article) problem to a single param-
eter (the developed composite index) problem. Second, the devel-
oped composite index is able to address the positively/negatively
and/or linearly/non-linearly correlation between each of the two
predictors (which are correlated each other) and the response.
Third, the developed composite index outperforms each individu-
al predictor in two ways: (i) if each predictor can inform the dis-
ease status or treatment effect, the composite index can definitely
do and (ii) if the composite index can inform the disease status or
treatment effect, each individual predictor may not be able to.
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It should be noted that the developed composite index depends
upon estimates of a and b, i.e, @ and 5 , which may not be inte-

gers. In this case, we may consider using [&] and [5] , where [K]
denotes the nearest integer of k. This may explain why Trefethen
[8] obtained a “-2.5” rather than “-2” for development of BMI. In
practice, however, it is suggested that the adjacent nearest integers
be evaluated for selection of optimal composite index [9].

A future possibility is to build and check the quality of a com-
posite index containing a variable for body structure and a variable
for muscle mass, especially since risk for diabetes can be influenced
by relative muscle mass for people with same height and weight,
thus same BMI. In addition to body frame, such as large or small,

despite same height could also be taken into account.
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