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Introduction
In clinical research, a medical predictive model is often estab-

lished using a multivariate set of risk factors (predictors). The pur-
pose of a medical predictive model is not only to predict the perfor-
mance of clinical outcome but also to provide valuable information 
regarding disease management including prevention, accurate and 
reliable diagnosis, and effective treatment of the diseases under 
study. In practice, for building a medical predictive model with a 
multivariate set of risk factors, a (logistic) regression analysis ap-
proach is often performed by the following steps: (i) identifying 
potential risk factors (e.g., demographics or patient characteristics) 
by determining associations between the potential risk factors and 
the response, (ii) testing for co-linearity among the identified risk  

 
factors, (iii) performing predictive model fitting with the identified 
predictors, (iv) performing goodness-of-fit of the fitted model, and 
(v) validating the developed medical predictive model [1]. In ad-
dition, generalizability of the medical predictive model should be 
examined for the purpose of external validation.

A well-established and validated medical predictive model 
upholds sparse predictors, particularly when these predictors are 
highly correlated with (dependent on) one another. Therefore, the 
principle investigator will try to integrate multiple predictors into 
a single predictor that informs the disease status and/or treatment 
effect while upholding accuracy and reliability [2]. Since each of the 
multiple predictors may be positively or negatively and/or linearly 

Abstract
In clinical research, a medical predictive modelling is often performed using a multivariate set of risk factors to predict the performance of 

clinical outcome for an effective disease management. Using a well-established and validated medical predictive model, our goal is to develop 
a composite index of several dependent predictors to better inform the disease status and/or treatment effect with more accurate and reliable 
assessments. In practice, since each of the multiple predictors may be positively or negatively and/or linearly or nonlinearly correlated to the 
clinical outcome or response, an ideal composite index should be able to account for positively/negatively and/or linearly/non-linearly associations 
with the clinical outcome or response. In this article, criteria and a statistical approach for development of an ideal composite index are proposed. 
Under the proposed criteria and procedure, statistical methods are also derived. The proposed procedure for development of the composite index is 
evaluated both theoretically and via a clinical trial simulation.

Keywords: Multiple Regression Analysis; Risk Factors; Medical Predictive Model; Composite Index.

WWW.biomedgrid.com
WWW.biomedgrid.com
http://dx.doi.org/10.34297/AJBSR.2020.10.001538


American Journal of Biomedical Science & Research

Am J Biomed Sci & Res                                     Copy@ Junheng Gao

389

or nonlinearly correlated to the clinical outcome or response, an 
ideal composite index should be able to account for positive/neg-
ative and/or linear/non-linear associations with the clinical out-
come. 

Similar to statistical methods used for characterizing calibra-
tion (standard) curves in lab-based assays, we will develop an ideal 
composite index using similar criteria and corresponding methods. 
For example, we propose that an ideal composite index should be of 

the format: 1 2
a bx x , where 1x and 2x are identified, highly correlat-

ed risk factors/predictors. Next, a procedure for the development 
of the ideal composite index, based on a multiple regression analy-
sis model, is proposed. Under the multiple regression analysis mod-
el, statistical methods are derived accordingly. The criteria, process, 
and statistical methods are evaluated both theoretically and via a 
simulation study.

The remainder of this article is organized as follows: Section 2 
will briefly introduce the concept of an ideal composite index, using 
examples from existing clinical research, and propose an innovative 
procedure for the development of an ideal composite index in clin-
ical research; Section 3 will derive the statistical methods; Section 
4 will apply the proposed to composite index in a simulation study. 

Development of a Composite Index
Under a well-established medical predictive model, it is com-

mon to see that these predictors may be dependent on, or somehow 
correlated to one another in a linear/nonlinear and/or positive/
negative fashion. 

Ideal Composite Index

Let  be the composite index of 

px and qx , where px  and qx are identified and highly correlated 
predictors which are relevant to clinical outcome and g is a utility 

function that combines px  and qx . The goal of the ideal compos-
ite index is to identify the utility function g such that the developed 
index can account for positive/negative and/or linear/non-linear 

associations between each of the predictors (i.e., px  and qx ) and 
the clinical outcome. 

In practice, the selection of function g depends upon the rela-
tionship between the clinical outcome and each of the predictors 

(i.e., px and qx ). For this purpose, we may consider the selec-
tion of a standard curve or calibration curve in the development 
and validation of an analytical method in laboratory testing. Let y 

be the amount of drug recovered (% of label claim) and x be the 
standard concentration. A standard curve or calibration curve is of-

ten determined based on the model fitting between iy  and ix , 
where i=1,..,n. In assay development and validation, the following 
four models are commonly considered:

Model 1 is linear with a non-zero intercept, while Model 2 is 
linear without an intercept. Model 3 and Model 4 are non-linear 
but can be linearized by taking the logarithm. Based on the consid-
eration that an ideal composite index should be able to account for 
positive/negative and/or linear/non-linear associations between 

each of the predictors (i.e., px and qx ) and the clinical outcome 
(y), we propose selecting the utility function g as follows

( , ) ( , )
p q

a b
pq x x p q p qI I g x x x x= = =

Example 1 – In clinical research, the above proposed composite 
index is commonly seen in practice. A typical example is the devel-
opment of body mass index (BMI). As indicated in BMI [3], the BMI 
was first discussed by Quetelet in his published research work on 
the weight of men at different ages in 1832. BMI serves as a medical 

predictive model for obesity, and uses the two predictors of px = 

weight (kg) and qx = height (m)]. In this case, BMI is given by 

2 2
2 ( )

( )
a b
p q p q

WeightBMI Weight Height x x x x
Height

− −= = = =

where a=1 and b=-2.

Most recently, Trefethen [4] proposed a new formula for com-
puting BMI as follows,

2.5 2.5
2.5

1.3 1.3( )( ) 1.3
( )

a b
p q p q

WeightBMI Weight Height x x x x
Height

− −= = = =

where a=1 and b=-2.5. 

The scaling factor of 1.3 was determined to make the new BMI 
formula align with the traditional BMI formula for adults of average 
height. The exponent of 2.5 is a compromise between the exponent 
of 2 in the traditional formula for BMI and the exponent of 3 that 
would be expected for the scaling of weight with height. 

Example 2 – Consider QT interval prolongation for cardiotoxic-

ity. Let px QT= interval and qx = heart rate (RR). Bazett [5] and 
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Fridericia [6] proposed the following indices, which is a corrected 

QT interval (denoted by CQT ) adjusted for the square root of RR, 
respectively:

1 1
2 2( )( ) a b

c p q p q
QTQT B QT RR x x x x
RR

− −
= = = =

, where a=1 
and b=-1/2,

and

1 1
3 3

3
( )( ) a b

c p q p q
QTQT F QT RR x x x x
RR

− −
= = = = , where a=1 and b=-

1/3.

Note that CQT B  (Bazett’s index) is widely used but may give 

erroneous results at both slow and fast heart rates. cQT F  (Frid-
ericia index) is also widely used and, compared to Bazett’s index, 
may give more consistent results at fast heart rates.

Proposal for Development of a Composite Index

In the interest of minimizing predictors, especially when these 
predictors are dependent on one another, and upholding generality, 
we consider the development of a composite index based on two 

confirmed predictors px and qx , which are corrected for each 
other. We propose the following steps for the development of an 

ideal composite index by reducing a two-parameter ( px and qx ) 
problem to a single parameter (the composite index) problem.

Step 1. Establish and validate a medical predictive model. Let y 
denote the clinical outcome/response (independent variable) and 

, 1,....,ix i K= be the risk factors/predictors (dependent vari-
ables). Consider the following multiple regression model:

1 1 2 2 .... , 1,....., ,j k k jy x x x j nβ β β ε= + + + + =  (1)

where , 1,....,i i Kβ = are regression coefficients and iε  is 
the random error term. Under the multiple regression model, a (lo-
gistic) regression analysis approach is often performed to (i) iden-
tify potential risk factors/predictors (e.g., demographics or patient 
characteristics) by determining associations between the potential 
risk factors/predictors and the response, (ii) test for collinearity 
among the identified risk factors/predictors, (iii) build a medical 
predictive model by fitting the clinical outcome/response with the 
identified predictors, (iv) perform goodness-of-fit of the fitted mod-
el, and (v) validate the developed medical predictive model based 
on some pre-specified performance criteria.

Step 2. Under the established and validated medical predictive 
model, obtain estimates of the regression coefficients of the two 

predictors px  and qx , which we will develop into a composite 
index accordingly. 

Step 3. Obtain predicted values of y based on px and qx as 

 Then, fit the mod-

el ˆ a b
pq p qy x x ε= , which can be done by taking a [the?] logarithm 

transformation. Consequently, estimates of a and b can be obtained.

The composite index based on px  and qx is obtained as 

ˆâ b
p qCI x x=  .

Statistical Method 

Obtain Estimates of Regression Coefficients of Predic-
tors

Under Model (1). Without loss of generality, assume y and all 

ix  are standardized variables. Under standardized variables, the 
mean and variance of the regressors are given by

1

1 0n
i ijj

x x
n =

= =∑
 
and

 

2 2
1

1 ( ) 1
i

n
ij ij

s x x
n =

= − =∑

for 1,....,i K= . Similarly, for the standardized variable of 
clinical outcome response (dependent variable), we have

1

1 0n
jj

y y
n =

= =∑ and 
2 2

1

1 ( ) 1n
y jj

s y y
n =

= − =∑
.

Suppose we are interested in developing a composite index for 

two identified risk factors, namely px and qx , where 1≤p≠q≤K, 

and px  and qx are known to be highly correlated in an unknown 
format. However, under the standardized variables, the sample co-

variance between px and qx can be obtained as follows

1 1

1 1( )( )n n
pq pj p qj q pj qjj j

s x x x x x x
n n= =

= − − =∑ ∑

Similarly, sample covariance between iy  and ljx is given by

1

1 n
ly lj jj

s x y
n =

= ∑
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As a result, sample correlation between px and qx and lx and 
y are given by respectively.

 
2 2

pq
pq pq

p q

s
r s

s s
= = and

 
2 2

pq
ly ly

l y

s
r s

s s
= =

,

In order to obtain estimates of pβ  and qβ , consider rewriting 
model (1) in the following matrix form

Y X β ε= +  (2)

where Y is the nx1 vector of dependent variables, X is the nxK 
matrix of regressors, β is the Kx1 vector of regression coefficients, 
and ε is the nx1 vector of random error terms. Under model (2), the 
ordinary least squares (OLS) estimator of β is given by

1( ' ) 'X X X Yβ −=


Based on standardized variables, β


can be written as a func-

tion of their sample correlations. Denote by lx the lth row of X. 

Thus, the (p,q)th element of 'X X is given by

'
. .1 1

( ' ) ( )n n
pq j j pq pj qj pq pqj j

X X x x x x ns n
= =

= = = =∑ ∑
Furthermore, the pth element of 'X Y is

'
.1 1

( ' ) ( )n n
p j p pj j py pyj j

X Y x Y x y ns nr
= =

= = = =∑ ∑
Now, denote by xxr the sample correlation matrix of X . That 

is, the KxK  matrix whose (p,q) entry is equal to pqr . Thus, 

' xxX X nr= . Similarly, denote by XYr  the 1Kx  vector whose pth 

entry is equal to PYr . Thus, ' XYX Y nr= . This implies

1 1( ' ) ' XX XYX X X Y r rβ − −= =


 (3)

The estimates of pβ  and qβ  are the pth and qth elements of β


 

Fitting the Model between Predicted Values and the 
Composite Index

For the development of the composite index based on px  and 

qx , which are dependent on each other,

consider fitting the following multicaptive model between the 
predicted values

, 1,.....,pqi p pi q qiy x x i nβ β= + =
 



 and the composite vari-

able, a b
p qx x :

 ,a b
pq p qy x x ε=

 

or log( ) log( ) log( ) log( ),pq p qy a x b x ε= + +

 which is 
equivalent to 

' ' ' ,pq p qy ax bx e= + +

where 

' ' 'log( ), log( ), log(  ) log( ). pq pq p p q qy y x x x x and e ε= = = = 

Following the idea described in Section 3.1, estimates of a and b 
can be similarly obtained.

Validation of the Developed Composite Index

We may validate the developed composite index by considering 

how close an observed y, its predicted value  (obtained from 

) and the predicted values  (obtained 

from  based on the fitted regression model dis-
cussed in the previous sections) are to one another. To assess the 
closeness, we propose the following two measures, which are based 
on either the absolute difference or the relative difference between 

pqy
 and pqy

:

In other words, it is desirable to have a high probability that the 

difference or the relative difference between pqy and pqy , given 

by 1p and 2p respectively, is less than a clinically or scientifically 
meaningful δ. Then, for either  = 1 or 2, it is of interest to test the 
following hypotheses

	  0 0: iH p p≤  versus 0: ,a iH p p> (4)
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where 0p  is some pre-specified constant. If the conclusion is 

to reject 0H  in favor aH , then the developed composite index is 
considered validated. The technical details of the test of hypothesis 
corresponding to the two criteria can be found in Tse et al. [7].

Simulation Study
In the simulation study, we construct a composite index that 

follows the similar modelling of body mass index with randomly 

generated weight px and height qx data. We examine three scenar-
ios at which predictive accuracy could be affected. Firstly, we run 
the simulation for different sample sizes and compare the closeness 
of developed composite index to the observed value. Secondly, we 
analyse whether the correlation relationship between the predic-
tors will affect the predictive accuracy. Thirdly, we test under differ-

ent regression equations for observed iy and ix , the estimation of 

composite index pqy is still consistent to the predicted values pqy .

In each case, we generated observed values for weight px  and 
height qx from bivariate normal distribution with correlation 

=0.6. The mean of weight and height are 70 kg and 1.8m and vari-
ance are 15 and 0.15 respectively. Those values refer to the BMI his-
torical data reported in the National Health Examination surveys. 
We assumed the true relationship between the clinical outcome 

pqy and the risk factors to be 52 0.4 33weight heighty x x= + ⋅ + ⋅
. We fitted the relationship between  and ,weight heightx x by linear 
regression, and obtained the coefficient estimates and predictive 

outcome p weight q heighty x xβ β= ⋅ + ⋅
 



. Then we applied the linear 

model for log( ) log( ) log( )weight heighty a x b x= + and obtained 

the composite index as . Here our composite 
index is analogous to the widely used BMI formulation. To test the 
predictive power of the composite index, we run the simulation for 

1000 times. The differences between pqy and pqy under different 
sample sizes, correlation coefficients, and combinations of β coeffi-
cients were summarized in Table 1. 

Table 1: Evaluation of the Closeness between pq pqy y−

  .

As shown in Table 1, the estimation of the proposed compos-
ite index is not affected by the sample size. Even for small sample 
size such as n = 50, the estimation is accurate and consistent. In 

scenario II, the difference between pqy and pqy  is minor for pro-

posed correlation between px  and qx . With higher correlation 
coefficient, the difference becomes relatively smaller. For different 
beta coefficients, the relative difference is robust while the absolute 
difference has a minor trend of increase when response variable 



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copy@ Junheng Gao

393

increases. Our results suggest the need to scale the risk factors or 
leave aside the intercept term before applying the linear regression 
model for the log-transformed variables.

Concluding Remarks
In this article, although the development of the composite in-

dex focuses on two dependent predictors, similar idea can be eas-
ily extended to develop a composite index combining more than 
two predictors, which are correlated one another. In the multiple 
regression analysis, the ordinary least squares (OLS) approach is 
considered for obtaining the estimates of regression coefficients. In 
practice, alternatively, we may consider weighted OLS (WOLS) for 
adjustment if heterogeneity in predictors are present. 

For simplicity and illustration purpose, we consider the predic-

tors , 1,....,ix i K=  are of the same data type such as continuous 

variable. In practice, however, , 1,....,ix i K=  may be of differ-
ent data types (e.g., continuous, binary response, or time-to-event 
data). In this case, the idea regarding the use of standardized vari-
ables as discussed in Chow and Huang [8] may be similarly applied.

An ideal composite index should possess the following advan-
tages. First, in the interest of parsimony of predictors, the devel-
opment a composite index reduces a multiple-parameter (e.g., two 
predictors as discussed in this article) problem to a single param-
eter (the developed composite index) problem. Second, the devel-
oped composite index is able to address the positively/negatively 
and/or linearly/non-linearly correlation between each of the two 
predictors (which are correlated each other) and the response. 
Third, the developed composite index outperforms each individu-
al predictor in two ways: (i) if each predictor can inform the dis-
ease status or treatment effect, the composite index can definitely 
do and (ii) if the composite index can inform the disease status or 
treatment effect, each individual predictor may not be able to. 

It should be noted that the developed composite index depends 

upon estimates of a and b, i.e., â  and b̂  , which may not be inte-

gers. In this case, we may consider using ˆ[ ]a  and ˆ[ ]b , where [k] 
denotes the nearest integer of k. This may explain why Trefethen 
[8] obtained a “-2.5” rather than “-2” for development of BMI. In 
practice, however, it is suggested that the adjacent nearest integers 
be evaluated for selection of optimal composite index [9].

A future possibility is to build and check the quality of a com-
posite index containing a variable for body structure and a variable 
for muscle mass, especially since risk for diabetes can be influenced 
by relative muscle mass for people with same height and weight, 
thus same BMI. In addition to body frame, such as large or small, 

despite same height could also be taken into account.
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