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Abstract 

Cancer is the second leading cause of mortality around the world; therefore, its immediate treatment is very necessary. Natural products 
(NPs) are considered more effective and less toxic among all therapies. The vital sources of these natural products are medicinal plants. Various 
studies have reported that the NPs cure cancer through modulation of the NF-kB pathway. Among the NPs, β-Elemene (ELE), Puerarin (Pue) and 
Gypenosides (Pue) possess potent anti-tumor effect via regulation of NF-kB pathway; therefore we summarize the available studies to provide a 
baseline for further research on these NPs.
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Introduction
Cancer is the second leading cause of mortality around the 

world, therefore, its immediate treatment is very necessary [1-
4]. Natural products (NPs) are considered more effective and less 
toxic among all therapies [1,3, 4]. The vital source of these natural 
products is medicinal plants [5,6]. NPs cure cancer via modulation 
of different molecular pathways, including NF-kB, MEK-ERK, 
autophagy, PI3K/AKT/mTOR, oxidative stress, inflammation and 
apoptosis [5].  Sesquiterpene lactones (SLs) are a group of NPs 
belong to C15 terpenoids group. These SLs possesses a variety of 
pharmacological and biological activities including anti-cancer and 
anti-inflammatory [6].  

In SLs, ELE possess potent anticancer effect against different 
cancers [7].  The source of ELE is Rhizoma Zedoaire, which I dry 
rhizome of Curcuma  khangsiensis, Curcuma wenyujin and Curcuma 
phaeocaulis [1]. The Chinese ministry of health has been approved 
ELE for the treatment of cancer [1].  ELE induces apoptosis through 
different mechanisms, including NF-kB pathway. Next, Puerarin 
(Pue) is also an NP derive from Pueraria lobata (Wild) ohwi, 
Pueraria tuberosa (Wild) and Pueraria thomsonii Benthi [5] and 
approved by the Chinese ministry of health for the treatment of 
different diseases [5]. 
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The NPs Gypenosides (Gyp) belong to a triterpine saponins 
group which are derived from Gynostema penthaphyllum (GpM), 
having an anticancer effect both in vivo and in vitro as well used 
in different clinical trials [8]. Gyp has been used for the treatment 
of a number of diseases in China, including hyper-lipoprotenemia 
[9], cardiovascular diseases [10], and hepatitis [11]. Furthermore, 
in a number of cancer cell lines including, oral cancer SAS cells, [12] 
SW620, 2, [13] and cervical epidermoid carcinoma cells have been 
reported [14]. Gyp inhibits the migration, invasion, metastasis, 
proliferation and induces apoptosis in a variety of cancers, including 
lung, hepatocellular, oral, colorectal and leukemic cancer through 
different mechanisms including NF-kB pathway 2.

NF-kB pathway and Cancer 
NF-kB (Nuclear Factor Kapbba B) is a transcription factor  

complex having homo and heterodimers of five members of a 
Reticuloenotheliosis oncogene cellular-homolog (Rel) family, 
including RelB, RelA (p65), c-Rel, NF-kB2 (p52/p100) and NF-
kB1 (p50/p105) [15]. The functions of NF-kB is dysregulated in 
tumerogenesis [16]. In different cancers, including prostate, breast, 
pancreas, liver, colon, lymphoma, leukemia and ovarian cancers the 
NF-kB has been reported inactive state [17-19]. The DNA damage 
in lead to activation of NF-kB due to which NF-kB targeted genes 
are becomes activated, such are cyclooxygenase-2 (COX-2) [20] 

and iNOS (inducible nitric oxide synthase) [21]. Next, the TNFα 
binding to TNFR causes homotrimerization of the adopter and 
receptor proteins, causes cell survival and proliferation through 
enhancing the expression of NF-kB and activator protein 1 target 
genes, including vascular cell adhesion molecule 1(VCAM 1)  
[22-24]. Furthermore,  the active NF-kB cause the activation of 
chemokines and its related receptors such are C-X-C chemokine 
receptor-4 (CXCR-4) and CCR-7 [25] which are involved in target 
organs [22]. These genes are involved in the anti-apoptosis and 
pro-survival.  It is very obvious that the NF-kB is a candidate for 
therapeutic resistance in a variety of cancers. NPs possess potent 
therapeutic activity against different cancers through regulation of 
NF-kB pathway [6, 26]. 

Targeting Cancer through NF-kB pathway with NPs (β-Elemene, 
Puerarin and Gypenosides). One of the most important and potent 
NP ELE shows its anticancer activities against different type cancer 
cells, including RPMI-8226, SGC7901/ADM and HL-60 through 
modulation of NF-kB pathways. In NF-kB pathway, ELE inhibit 
NF-kB p65, COX-2, PGE2 and lead to inhibition of cell proliferation 
[27-29] as depicted in Figure 1. Another NP Pue has a potent effect 
against different cancer cell lines including, lipopolysaccharide 
induced THP1 [30], Z138 [31], T24 [32], MCF-7 [33], MCF-7/
Adriamycin (MCF-7/adr) [34], and MDA-MB-231 [33]. 

Figure 1: NPs (ELE, Pue and Gyp) and NF-kN pathway in different cancers. In NF-kB pathway, ELE inhibit NF-kB p65, COX-2, PGE2 and lead to 
inhibition of cell proliferation. Pue downregulate the expression of TNF-α and IL-6 and Pue inhibits the expression of inflammatory factors TNF-α 
and IL-6 and reduce the activation of NF-kB through downregulation of p-IkBα/IkBα, IkkappaB and p65 while increasing the expression of miR16. 
Next, Pue inhibit the nuclear translocation of NF-kB [33] which result in downregulation of COX-2, MMP-2,9, CXCR-4, CCR-7, VCAM, and ICAM, 
both at mRNA and protein level. Gyp downregulate the SOS, RAS, uPA and FAK, which further reduces the expression of AKT, NF-kB, iNOS and 
COX-2 while activating p53. Furthermore, they inhibit MMP-2,7,9 which result in inhibition of cell migration, invasion and metastasis.
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In these cells, Pue negates adhesion [33], inhibit migration 
[33], invasion [33] and proliferation [31] through modulation of 
NF-kB pathway [30,31,33-35].   Furthermore, Pue downregulate 
the expression of TNF-α and IL-6 and  Pue inhibits the expression 
of inflammatory factors TNF-α and IL-6 [33] and reduce the 
activation of NF-kB through  downregulation of p-IkBα/IkBα [30, 
33,34] IkkappaB [33,34] and p65 while increasing the expression 
of miR16 [32]. Next, Pue inhibit the nuclear translocation of NF-
kB [35] which result in downregulation of COX-2, MMP-2,9, CXCR-
4, CCR-7, VCAM, and ICAM, both at mRNA and protein level [33]. 
Natural Gyp possesses anticancer effect against SAS and SCC-4 cells 
through NF-kB pathway via downregulation of  SOS, RAS, uPA and 
FAK, which further reduces the expression of AKT, NF-kB, iNOS and 
COX-2 while activating p53. Furthermore, they inhibit MMP-2,7,9 
which result in inhibition of cell migration, invasion and metastasis 
[12,36] as shown in Figure 1.

Conclusions
NPs play pivotal role in cancer therapy. Among these NPs, 

the ELE, Pue and Gyp possesses the anti-tumor effect through 
modulation of NF-kB pathways. Further, the mechanisms have been 
summarized in Figure 1.
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