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Opinion

Bacteria exist in a variety of physiological types, environmental
habitats and niches of occurrence. In these environments, bacteria
are predominantly found in the stationary growth-phase (SGP) due
to oligotrophic conditions, biotic and physico-chemical stress [1].
The physiological and biochemical properties of bacteria reflect
their “environmental-fitness” or adaptability to the environmental
habitats i.e. extreme barophilic bacteria isolated from the deep-sea
[2], a thermophilic isolate from an ultra-deep South African gold
mine [3], metalophillic species from a domestic showerhead bio-
film [4] plant/animal symbiotic bacteria [5,6]. The ability to survive
and proliferate under such conditions depends on the physiological
regulation of SGP and consequently, the synthesis of natural prod-
ucts/bacterial bioactive metabolites (BBM) [7], a process intricate
to the global stress-response mechanism in bacteria [8]. This there-
fore indicates that BBM synthesis can influence ecological land-
scapes through direct antagonism, niche defence and signalling [9].
Albeit the ecological significance, bacterial natural products have
been used for example as anticancer drug leads and other human
diseases and are the main source of clinically used antimicrobials to
combat infectious diseases [9]. It is therefore, the opinion of the au-
thors that, bacterial metabolites (BM) production can be exploited
for the purposes of directed drug discovery i.e.

(i) The production by marine bacteria of specialized lipids
(for lipid metabolism-associated diseases) in response to changes

in salinity, temperature and pressure [7],

(ii) Siderophore production (for diseases in metal-ion imbal-
ance and drug delivery systems) in response to limiting concentra-

tions of micronutrients (Fe3+ in particular) [7],

(iii) Chemical communication (antibiotics and cell signaling )
upon co-cultivation of two or more bacterial species [10] and,

(iv) The production of “plant-derived” antimicrobials and rad-
ical scavenging metabolites (for antimicrobial and anticancer ther-
apy) by bacterial symbionts [5,10].

The bacterial bioactive metabolites are low molecular weight
(100-1000 Da) natural products of overwhelming chemical diver-
sity [9] and consequently, diverse biological activity. The enzymes
that catalyses the reactions of molecular assembly (metabolite syn-
thesis) are encoded on biosynthetic gene clusters (BGCs) and Next
Generation Sequencing (NGS) continues to reveal an unprecedent-
ed potential for BBM production in bacteria [11]. This potential re-
mains untapped because, In vitro activation for most of the (cryptic
or silent) BGC’s has proven to be challenging in many laboratories
(and for a diversity of reasons) albeit some success stories reported

in literature [7].

At this point, the author would also like to extend on the opin-
ion presented earlier and suggest that the manipulation SGP phys-
iology in a stress-antagonistic manner can result in the activation
of specific BCGs and can be exploited in order to inform targeted
bioactivity or directed prospecting for therapeutics. We therefore
present herein, a few aspects of SGP physiology that tell-tales of the
key considerations in the regulation of BMM synthesis.

Stationary  Growth-Phase  Physiology, BGC

Activation and Metabolite Synthesis

It can be easily inferred from the literature that stress-antago-
nism is one of the key triggers to bacterial bioactive metabolite pro-
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duction [7-10]. Furthermore, since BBM production is tightly linked
to the stationary phase/global stress response, the role played by
alternative sigma factors and stationary phase cis-acting regula-
tory sequences in this regard is also documented [12]. Therefore,
we hypothesize that the above-mentioned factors can drive basal
BGC expression and that high-level and (or) differential activation
is achievable with exposure to a particular stimulus or a combina-

tion thereof.

A case in point is the reported metabolite-mediated bacterial
responses to conditions of high salinity, low temperature, oligot-
rophy and pressure reported for marine bacteria [10]. The abili-
ty of bacteria to maintain biological functions under the stressful
conditions results from changes in protein, sterol, hopanoid and
carotenoid content, but mainly from changes in membrane lipid
composition [13] or the production of specialized lipids such as
sterols and polyunsaturated fatty acids [14,15]. Bacterial cells are
also able to produce fatty acids as niche defense compounds. For
example, Pseudoalteromonas haloplanktis produces isovaleric acid
(3-methylbutanoic acid) and 2-methylbutyric acid (2-methylbuta-
noic acid), which have antibacterial activities [16]. This, therefore,
potentially ties the activation of the BCGs involved to bacterial fatty
acid metabolism and the activities of the associated regulatory cis-
and trans-acting elements [17].

In some bacteria, carbon catabolite repression (CCR), a global
regulatory mechanism for sequential utilization of carbon sources
[18], has been linked to the regulation of bioactive metabolite syn-
thesis and also reported as a key factor in the disease development
for many pathogenic bacteria [18]. This therefore suggests CCR as
a key regulatory mechanism in bacteria niche protection and also
further points to the involvement of ‘stress-inducible transcription-
al programming’ which tells-a-tale of the potential to differentially
activate BCGs and perhaps, the involvement of epigenetic gene reg-

ulation [19] in metabolite-mediated stress response.

In conclusion, in a recent publication [20] reported on the ad-
aptation of bacteria to oxidative stress by non-lethal exposure to
H202 which amongst other possibilities could suggest the acti-
vation of radical scavenging BGCs and indicates the prospects for
directed prospecting for antitumor therapy [21] and numerous
other therapeutic metabolites in this or a related way. This coupled
to the fact that bacteria are generally amenable to manipulation in
the laboratory means that the SGP can be induced with ease and
the physiology manipulated towards the production of the desired
bioactivity.
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