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Abstract

Prostate-specific antigen (PSA) testing is one of the most commonly used screening tools to detect clinically significant prostate
cancers at a stage when intervention reduces morbidity and mortality. However age-specific reference ranges have not been
generally favored because their use may delay the detection of prostate cancer in many men and as such may lead to harm in
terms of overdiagnosis and overtreatment. The widespread use of PSA has proven controversial as the evidence for benefit as a
screening test in asymptomatic men is still subject to debate. In this article, we applied bootstrap resampling technique to obtain the
confidence interval for PSA screening age among prostate cancer patients in Nigeria. The bootstrap analysis is a useful technique for
investigating variations among selected models in samples drawn at random with replacement, its distribution is used to estimate
more robust empirical confidence intervals and is useful when the usual modeling methods based on assumptions about sampling
distributions are untrustworthy or unavailable. The study is particularly relevant in light of the recent controversy about prostate

cancer screening.
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Introduction

Prostate cancer like lung cancer is one of the most recurrent
cancer diagnosed in men universally, and the most often identified
solid tumor among men in developed countries [1]. Notwithstand-
ing a relatively high survival rates for men with prostate cancer,
over 300,000 prostate cancer deaths occurred in 2012 worldwide
and the universal drift of the disease is still rising. Literature has it
that more than 2 million men are likely to be affected worldwide by
2040 [2,3]. Among other factors, age and family history are viewed
as key risk factors for prostate cancer, black men are more volatile
to the incidence of prostate cancer and death than white or Asian
backgrounds [4]. The introduction of prostate-specific antigen
(PSA) for prostate cancer detection in the 1990s has proved that
most of cases of prostate cancer are diagnosed in men from western
countries in the Americas and Europe. Prostate cancer is often dic-
tated among men within the ages of over 40 years and most often
50 years. Research have shown that the average age confirmation
age is 67 and by 70, more than half of men have at least infinites
imal evidence of the disease [5]. Fortunately, prostate cancer trait

generally occurs in advanced stages, making early detection worth-
while and most prostate cancer deaths usually occurs at very old
age because it is usually late-maturing and are caused by something
else. Two major monitoring devices for testing the prostate cancer
are digital rectal examination and prostate-specific antigen (PSA)
with the goal to detect clinically significant prostate cancers at a
stage when intervention reduces morbidity and mortality; however,
there is a growing debate on the merits and methods of screening.

It has been suggested that the use of age specific PSA reference
ranges may increase the precision of PSA test since a man’s PSA
level has direct relationship with age. However, age-specific refer-
ence ranges have not been generally recommended because their
use may retard the detection of prostate cancer in many men. The
universal use of PSA has proven controversial as the evidence for
benefit as a screening test in asymptomatic men is still subject to
debate, and PSA is inclined to false positives and false negatives in
men with symptoms suggestive of a possible diagnosis of prostate

cancer [6,7]. Moreover, PSA screening can reduce prostate cancer
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mortality by around 1 death prevented for every 98 men screened
on a lifetime basis, but that still means for every prostate cancer
death prevented by screening, 3 or 4 die from prostate cancer. In
addition, PSA screening can lead to sizable over diagnosis, with ap-
proximately 5 unnecessary prostate cancer diagnosis per 100 men
screened. These patients then inclined to be managed unwarrant-
edly, which can always cause a significant side-effect, such as incon-
tinence and/or impotence [7]. When Prostate-specific antigen lev-
els is less than 4ng per mL in 15 to 38 percent of men with cancer,
itimplies a high false-negative rate but the positive predictive value
of the prostate-specific antigen test is roughly 30 %; which means
that less than one in three men with an abnormal finding will have

cancer on examination [8].

Such limitations of the prostate-specific antigen test have
steered variations designed to improve its accuracy (e.g., age- and
race-specific cutoffs, free prostate-specific antigen tests); however,
none of these modifications have been widely adopted because of
unsettled advantage. The major issue is that PSA monitoring may
result in the detection of some cancers or diseases that ordinarily
would never have bothered the patient and would never have posed
a threat to his life as older men are more likely to die from heart dis-
ease and other problems than from prostate cancer. Therefore, rely-
ing too much on the test may lead to unnecessary examinations and
potentially harmful treatments. Several major studies have found
that PSA monitoring saves few, if any, lives. On the other hand, there
is a small possibility of reducing the chance of death from prostate
cancer in some cases. For men aged between 55 and 69, the choice
to have a PSA examination is based on the risk factors and person-
al preference. However, the use of PSA-based screening for pros-
tate cancer is discouraged for ages from 70 years and above by the
United Sates Preventive Services Task Force (USPSTF). According
to [8] in a meta-analysis, estimated that PSA test has a specificity of
a sensitivity of 93.2 and sensitivity of 72.1. Although, such survey
studies demonstrated that up to 38% of prostate cancer occur in
men with PSA values less than 4ng perM1 after being diagnosed
with prostate cancer [8]. The dispute over whether the advantages
of the use of prostate specific antigen (PSA) exceed the treatment
risks for most men has prevailed over time. In general, the current
agreement is that there is no “one size fits all” guideline for who
should receive prostate cancer screening and at what age. Against
this backdrop was the study carried out, therefore the objective of
this study is to examine the application of bootstrap resampling
methods to capture the confidence interval of age of PSA screening
among prostate cancer patients. The rest of the paper is organized
as follows. Section 2 presents brief literature review on bootstrap
techniques. Section 3 presents the material and methods. Section 4
describes the result of the analysis. Section 5 presents the summary
and conclusion.
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Bootstrap Method

Bootstrap and Jackknife resampling techniques are created to
estimate standard errors, bias, confidence intervals, and prediction
error. Works has revealed that the Bootstrap procedure is the most
satisfactory for confidence interval appraisals among resampling
methods. The Bootstrapping method is a resampling technique
for evaluating unpredictability in which samples of size n are ob-
tained with replacement from the original sample of size n. It is a
very powerful statistical device a that can be used to evaluate the
uncertainty related with a given estimator or statistical learning
method and give estimates of the exactness of sample estimates of
regression coefficients, fitted values and prediction of new observa-
tion and at the same time provide numerical solutions to problems
whose difficulty makes the use of traditional statistical analysis un-
achievable and where the assumptions of regression analysis were
not met [9-11].

The Bootstrap technique is also a method of calculating confi-
dence intervals for nearly any estimate and it is theoretically simple
and finding very widespread use in applied statistics and can be
used to explore variations among possible models for the original
dataset. The bootstrap technique enables researchers to calculate
confidence intervals for any statistics regardless of the data’s un-
derlying distribution and additional sub-samplings and replica-
tions are executed on the indigenous sample. In other words, in the
beginning of the process thousands of “bootstrapped resamples”
are generated from the original sampling using random sampling
with replacements, after which the assigned statistic (i.e. mean,
median, regression, Cronbach’s alpha coefficient, etc.) is replicat-
ed in each of these resamples. In most studies the analysts start
with the population and take a sample from the population and
run an analysis on that sample. Therefore, researchers may obtain
thousands of estimates on the assigned statistics. Distribution of
those estimates is called “bootstrap distributions”. The bootstrap
distribution may be used to estimate more robust empirical confi-
dence intervals. Bootstrapping is useful when the usual modeling
methods based on assumptions about sampling distributions are
untrustworthy or unavailable, for example when modeling the op-
timum effect of age or of dose of a treatment on performance via
a quadratic relationship. The bootstrap methods can be applied to
both parametric and non-parametric models, although most of the
published research in the area is concerned with the non-paramet-
ric case since that is where the most instant practical gains might
be expected. Often, it is used as a substitute to statistical inference
based on the assumption of a parametric model when that assump-
tion is in doubt, or where parametric inference is requires elaborate
formulas or unfeasible for the estimation of standard errors [10]. In
bootstrapping, the benefit of the statistic is usually calculated for

more samples or each of a thousand, each of the same size as the
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native sample and each drawn arbitrary (with replacement) from
the original sample. These values are then examined as if they came
from reiteration of the study; thus, the confidence limits are given
by appropriate percentiles of the values, and probabilities are giv-
en by the proportion of values falling above or below chosen mag-
nitude thresholds. Depending on the type of the data, the method
provides trustworthy values of these inferential statistics when the
sample size has 20 as the least value and the number of replications
is very important. Diciccio et al. [12] pinnacled the importance of
using at least 2000 replications while conducting bootstrap resam-
pling. The application of the strategy itself is explained in all tangi-
ble conditions in which the classical methods of inference operate
under very limiting or impracticable hypotheses or “in asymptotic
terms” [13].

Nevertheless, it is necessary to consider that Bootstrap meth-
ods raise algorithmic issues (which may be resolved with suitable IT
tools only), but also interpretative difficulties regarding the reliabil-
ity as well as the variability of the results. According to Banjanovic
et al. [14] the uncommon use of confidence intervals is due to esti-
mation difficulties for some statistics. Some statistics may require
multi-step formulas with assumptions that might not always be via-
ble for calculating confidence intervals. The applied bootstrap was
found in 1979, Efron [15], but it was practicable to implement it
without present-day computing power. One can make a probabilis-
tic decision about the enormity of the true effect using confidence
limits and probabilities as inferential statistics [16]. The method is
a substitute to generating confidence limits and probabilities about
the true value of the effect, and it is the only method when the
sampling distribution is either not familiar or too hard to quantify.
Singh [17] further stressed that a more accurate result which is far
better than the traditional normal approximation can be obtained
with the bootstrap estimator of the sampling distribution of a given
statistic because the method is asymptotically identical to the one-
term Edgeworth expansion estimator, generally having matching
convergence rate that is speedy than the normal approximation. In
most modern statistical texts, the bootstrap method is suggested
for estimating sampling distributions and finding standard errors,
and confidence sets.

The Bootstrap Bias, the Variance, the Confidence and
Percentile Interval

The mean of sampling distribution of , often varies from 9,

usually by an amount = ¢/ n for large n. The bootstrap bias equals,

bias=0- D
The variance of the bootstrap from the distribution of F(éb) are
estimated by (Liu, 1988; Stine 1990)

Var(6s) = é[(ébﬁéh)(éhﬁéb)‘]/(371),r ~1,2...0 @
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The bootstrap confidence interval by normal approach is ob-
tained as

gb_tnfp,mz *Se (éh)<9<éb+tnfp,a/z *Se(éh) (3)

where L-pan is the critical value of t with probability a/2 the

right for n-p degrees of freedom; and s, (4) is the standard error of

the 0, . The Z-distribution values were used rather than that of t in
estimating the confidence intervals when the sample size is n =30
[18]. The percentile interval which is nonparametric confidence
interval can be derived from the quartiles of the sampling distribu-

tion of bootstrap of g, . The (a/,) % and (1-a/,) % percentile

interval is:

é,,,‘ (lower) < 6, < 8;, (upper) (4)

where g, is the ordered bootstrap estimates of regression coef-
ficient from Equation 2 or 5, lower = («/,)B, and upper = (1-a/,)B.

Bias-Corrected Percentile Confidence Intervals

One issue with using the bootstrap percentile method happens
when the assumption regarding the transformation to normality is
violated. In such case, a confidence interval based on using the per-
centile method would not be relevant. In other words, the purport-
ed (supposed) confidence level is not close to the true confidence
level

Material and Methods

The aim following bootstrapping is that if we don’t know what
the underlying population is, then our sample is our best guess at
what the underlying population is. The objective then is to extract
samples from our initial sample as if we were drawing multiple
samples from a population. This should work well if we are making
inferences from a large sample size.

Material

The study sample comprised 100 prostate cancer patients from
University of Port Harcourt Teaching Hospital. The SAS version 9.0
and SPSS statistical packages were used for the statistical analysis
of the data.

Method

In our study, we bargain with the residuals resampling. The
bootstrapping residuals steps are as follows:

1. We set estimate the regression coefficients from the orig-
inal and compute the residuals e,

2. Forr=1,2,..,B, extract a n sized bootstrap sample with
replacement ) e, from the residuals e, ,and calculate the bootstrap

y values
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yb =Xﬁols+eb (5)

3. Estimate the regression coefficients based on equation
(5), using

A A 1 ' (6)
ﬁbr =ﬁ013+(X X) Xebr
and repeat steps 2 and 3for r. Then the bootstrap estimate of
the regression coefficient is:
>
B, =——=f (7)
Br=g==Pu
The bootstrap bias and the variance are given below Shao et
al. [19]

bias(b) = (B, - B,,) (&)
VB =SB BB B) (9)

Table 1: Confidence Intervals for Bias-Corrected Bootstrapped Samples.
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First, we regressed volume of capsular penetration and Glea-
son score on age of 100 prostate patients. Amount of capsular
penetration and percent Gleason score were used as predictor
variables since both are potential predictors of prostate-specific
antigen (PSA) [20]. We begin with by differing the number of boot-
strap samples in an uncomplicated manner, procure 50, 100, 500,
1,000, and then 10,000 bootstrap samples. We then compare the CI
produced from the regression analysis by empirical bias corrected
bootstrap resampling technique to those produced by the acceler-
ated bias corrected (B_) method. Finally, we compute and compare
the results (Tables 1 & 2). In this case, the two methods are estab-
lished to occasion similar results, with differences generally at the
first or second decimal place. Notice that these methods will make
similar results unless the data violate parametric assumptions (e.g.,
data is not normal). In such cases, the bootstrapped CI will yield a
better estimate because that calculation does not rely on distribu-
tional assumptions of the data [12].

Bootstrap?
No. of Replications 95% Confidence Interval
B Bias Std. Error Sig.(2 Tailed)
Lower Upper
Intercept 53.3560 -0.6730 5.9810 0.0200 42.1500 69.1730
50 G. Score 2.7320 0.0720 0.6560 0.0200 1.3400 4.3430
Capsula -0.1870 0.0160 0.4370 0.6080 -1.2810 0.6030
Intercept 53.3560 0.2930 5.5460 0.0100 42.8070 68.1450
100 G. Score 2.7320 -0.0100 0.6790 0.0100 1.2030 3.9070
Capsulac -0.1870 -0.0390 0.3800 0.6240 -1.0800 0.5170
Intercept 53.3560 -0.3090 6.5790 0.0020 40.5540 67.4630
500 Capsula 2.7320 0.0240 0.7490 0.0020 1.1600 4.1430
Capsula -0.1870 0.0170 0.3940 0.6490 -9170 0.6270
Intercept 53.3560 -0.1390 6.0230 0.0010 41.4220 64.2340
1000 G. Score 2.7320 -0.0050 0.6800 0.0020 1.4420 4.0680
Capsula -0.1870 0.0230 0.4010 0.6250 -0.9350 0.6730
Intercept 53.3560 -0.2400 6.0610 0.0000 41.2720 64.9480
10,000 G. Score 2.7320 0.0280 0.7010 0.0000 1.3660 4.1240
Capsula -0.1870 0.0030 0.3990 0.6400 -0.9520 0.5940
Table 2: Confidence Intervals for Bias corrected accelerated Bootstrap (Bca) Samples.
Bootstrapa
No. otfi(l:relslica- B Bias std. Error Sig, (2-tailed) Bca 95% Confidence Interval
Lower Upper
Intercept 53.356 -0.238 6.978 0.02 40.983 67.88
50 G. Score 2.732 0.027 0.715 0.02 1.138 4.293
Capsula -0.187 0.007 0.45 0.686 -0.81 0.457
Intercept 53.356 -0.491 5.637 0.01 44.224 67.557
100 G. Score 2.732 0.03 0.653 0.01 1.182 4.142
Capsula -0.187 0.029 0.427 0.574 -1.332 0.871
Intercept 53.356 -0.309 6.579 0.002 41.152 66.461
500 G. Score 2.732 0.024 0.749 0.002 1.054 4.204
Capsula -0.187 0.017 0.394 0.649 -0.941 0.747
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Intercept 53.356 -0.139 6.023 0.001 41.371 63.764
1000 G. Score 2.732 -0.005 0.68 0.002 1.429 4.084
Capsula -0.187 0.023 0.401 0.625 -0.977 0.734
Intercept 53.356 -0.24 6.061 0 41.384 64.32
10,000 G. Score 2.732 0.028 0.701 0 1.315 4.174
Capsula -0.187 0.003 0.399 0.64 -0.953 0.601

Results interval method which requires no assumptions about the distribu-

We investigated the use of bootstrap resampling technique on
confidence interval for prostate specific antigen (PSA) screening age
among prostate cancer patients using OLS method with age of pros-
tate cancer patients as a function of volume of capsular penetration
and percent Gleason score as indicated above. Firstly, we consid-
ered the distribution of each variable as the tradition demands and
the graphs are indicated in Figure 1. The Figure 1 shows that the
data were not normally distributed and so would produce different
confidence intervals. A closer look at the figure showed that all the
variables were asymmetric and using such data disagrees with boot-
strap distribution, in which case bias may occur. If the bootstrap
distribution is non-symmetric as could be seen from the histogram
above, then percentile confidence-intervals are often inappropri-
ate. The bias-corrected and accelerated (B_ ) bootstrap adjusts for
both bias and non-normality in the bootstrap distribution. In this

study therefore, we considered the bias corrected and accelerated

tion of the data sets. For each bootstrap method of sampling, both
bias-corrected and accelerated bias-corrected confidence intervals
are constructed and presented in Tables 1 & 2. The OLS regression
model was first fitted to data and the summary of the results is as
shown in Table 1. Performing B =10,000 Bootstrap replications we
obtain the results described in Table 1 and 2, where the age slope
point estimate for the original sample is presented. The age, with
the two predictor variables (i.e. Score and Copra) are reported in
Table 1. It can be observed from the OLS regression model that the
average age of prostate cancer is 53 years from the sampled data
and it is significant at 5 percent level. The above table reveals that
the significance of the Bootstrap increases with the sample size.
The change in percentage standard deviation as a function of the
number of replications is shown in Table 1. As can be seen in Figure
2, for small values of B, the confidence interval diminishes clearly
and then relaxes gradually. Consequently, as B rises to 1,000, it is
then balanced.

e
Pty

3
[t

(a) Capsular Penetration

(b) Percent Gleason Score

o

1
T Al

(c) Age

Figure 1: A histogram of the Capsular Penetration, Percent Gleason Score and Age of sampled prostate cancer patients.
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Figure 2: Stability of the bias-corrected (B) 95% lower and upper bootstrap confidence intervals.
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This permits us to select the number of bootstrap replications
B = 1,000 with the least confidence interval 95% of the distribu-
tion. Similarly, B=1000 replications are selected to construct the
bootstrap prediction intervals. The stability was achieved between
1000 and 10,000 replicates indicating the likely age interval for
PSA screening. (Table 2) presents confidence intervals for bias
corrected accelerated bootstrap (B_) samples. In Table 2, the es-
timator seems to be smaller across all the models and the smaller
the divergence the better. The dissimilarity between confidence in-
tervals obtained by these bootstrap methods is more pronounced
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when the replicates are longer. Furthermore, the most important
results are the comparison between the 95% percent CI estimates.
All the B_ intervals are more realistic than the Bias corrected meth-
od, thereby improving the reliability of the estimates. The major
benefit with the B_, interval is that it corrects for bias and non-nor-
mality in the distribution of bootstrap estimates. (Figure 3) also
shows divergence in confidence interval as the sample progresses.
The sensitive interval for PSA screening age among prostate cancer
patients was also reaffirmed between 1000 and 10,000 replicates
using accelerated bias at 95% confidence interval.

50 100

— | yver confidence bound

500 10000

500 1000

s || pper confidence bound

Figure 3: Stability of the accelerated bias-corrected (Bca) 95% lower and upper bootstrap confidence intervals

A closer look at the two results in terms of coverage, stipulates
that B_ intervals are “better” than B of bootstrap intervals. In other
words, the B, coverage is closer to the nominal value. In some cas-
es, this may suggest that the intervals are wider or narrower than
other types of bootstrap intervals. The result also agrees with the
larger the sample is, the more information it carries about the pa-
rameters and this is reflected on the “precision” of the estimation.
The survey reveals that confidence intervals constructed under B
has better coverage ability, tighter and a narrower width which is
desired for any coverage probabilities compared to bias-corrected.
A look at Table 3 shows that between 500 and 10,000 replicates,
both biased correlated and accelerated biased correlated bootstrap
resampling methods exhibited the same bias value (i.e. -0.309,-
0.139 and -0.24) which further confirmed the stability in age of
sampled patients. However, the best interval occurred at 1000 since
it has the least confidence interval. An interesting finding of this
study is the convergence of both methods which is indicates after
1000 replicates were the least confidence interval was attained.
Since confidence level refers to the long-term success rate of the
method, that is, how often this type of interval will capture the pa-
rameter of interest. A specific confidence interval gives a range of
plausible values for the parameter of interest. This suggests that
the appropriate age of prostate cancer screening is from 41 years

and above with an interval repeat of 4 years.
Conclusion

The use of bootstrap method paves a way of reducing bias and
getting the standard errors in cases where the standard techniques

might be expectedly inappropriate. Accordingly, in practice, we rec-
ommend the use of the bootstrap method in estimating the variance
and constructing confidence intervals related with nonparametric
regression estimator. The study reveals that starting PSA screen-
ing age among prostate cancer patients should be from 41 years,
with repeats at 45 (i.e.an interval repeat of 4 years) will help de-
tect those extremely aggressive cancers that tend to occur in men in
their early fifties with remarkably low serum PSA and this findings
is in line with EAU [7], but with high risk poorly differentiated tu-
mors that hardly express PSA. Change in PSA levels between 40 and
50 will raise suspicion of these deadly prostate cancers.” This study
has shown that use of bootstrap confidence interval could be used

to improve the accuracy of PSA-based prostate cancer screening.
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