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Introduction
The concept of Ion Vibration Potential (IVP) by applying 

an ultrasonic wave to electrolytic ions has its origin back to 
Debye who initially predicted this phenomenon as a sound wave 
propagates through an electrolyte suspension [1]. The IVP will 
be generated because of the passage of the external acoustic 
wave interacting with the ionic source. This particular potential 
arises due to the difference in cations (negatively charged ions) 
and anions (positively charged ions) mass and in addition, it 
will accompany the applied ultrasound wave, having the same 
frequency but lag in phase. The generated potential can be detected 
either as a current, Ion Vibration Current (IVI) or Voltage (IVP) 
between two points in space. Herman’s and Rutgers extended this 
terminology to colloidal systems, and consequently, Yeager and 
Zana performed the first experimental work on silica suspensions 
[2-7]. Eventually, the term was more generalized to Colloid 
Vibration Potential (CVP). The relative signal magnitude of CVP is 
much stronger than IVP; typically, a factor of 20 and the value is in 
order of few hundreds of mV or few µA depending on measuring  

 
the desired voltage or current, both IVP and CVP are special cases of 
Ultrasound Vibration Potential (UVP). 

CVP is the creation of an electric field caused be the applied 
ultrasonic field due to the displacement of the surface charged 
particles. Usually, charges are carried by the particle in a suspension, 
and it is surrounded by oppositely charged counter ions facilitating 
an overall neutrality of the entire suspension. A layer, known as 
the Double Layer (DL), contains the surrounding charge, which 
is spherically distributed surrounding the particles. The external 
ultrasonic force is categorized as being a pressure gradient force 
and displaces the charge carriers (the particle and counter ions) 
from their equilibrium position causing a polarization, which is 
treated as a charge-dipole. The time varying ultrasonic field results 
in a generated alternating electrical field, which is measured by two 
electrodes placed across the suspension. 

Enderby and Booth conducted the first theoretical work 
associated with the CVP [8]. Subsequently, O’Brien followed a 
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different approach and also described the inverse effect of Electro 
Sonic Amplitude (ESA) [9-19]. The modern understanding of CVP 
was established from the respective work of Shilov & Ohshima [20-
29]. With Dukhin & Goetz [30] linking both approaches and the 
current understanding of CVP applying both O’Brien’s, and Enderby 
and Booth’s modern theory to the experimental data [30-40]. The 
generated electric field is described by following equation [17]:

* d
E p

K
φ ρ

ρ µ
∆

= − ∇ 	 (1)

This is a key equation for understanding the vibration potential, 
it is stating that the generated local electric field is proportional to 
the pressure gradient force Δρ and the electrophoretic mobility. 
Here ϕ is the volume fraction of particles, ρ is the mass density of 
the suspension, Δρ is the density difference between the particles 
and the fluid, the parameter µd is the dynamic mobility of the 
particles and K* is the complex conductivity.

In this contribution, we demonstrate a new experimental 
measurement strategy by applying an external sensor to the 
colloidal source in order to detect the CVP signal magnitude fully 
outside the materials in the current mode. The addressed technique 
differs from commercial instrumentation such as described in 
literature, where the transducer is either immersed or contacted 
with the suspension [38], which relies on the fact that the generated 
signal is homogenous. Our technique is a step towards developing 
an imaging technique to be implemented in medical industry and 
it will require an external sensor located fully outside the body 
of interest. The measured quantities are in good agreement with 
existing theoretical predictions by Ohshima & O’Brien [39,40], 
in addition, indirect measurements using the ESA (Electro Sonic 
Amplitude) technique is also comparable to our findings. Recent 
experimental techniques demonstrated by Guan et al. & Schlaberg 
et al. [40,41] and Beveridge are all limited allowing the CVP signal 
to be detected at the boundary or within the colloidal source [41-
43].

Methodology
The experiments were conducted applying the Leeds standard 

II facility, described by Khan et al. [44] using three different 
transducers operating at 0.5, 1 and 2MHz central frequency 
respectively. The colloid vibration potential signal magnitude 
was detected for a selected group of silica dioxide suspensions 
consisting of five different principal particle size distributions of 
35, 70, 100, 165 and 190 nanometres(nm) and each size with 3 
different concentrations of 0.5% by weight (wt.), 1% by wt. and 5% 
by wt. The principle of detecting the CVP signal experimentally is 
similar as described for the case of IVP [44]. Further contribution 
has been made to the generation of the CVP signal [45]. In Figure 1 
the schematics provides insights to the principle and mechanism 
of creation of the CVP effect. The arrows indicate the relative 
displacement of anions and cations upon action of an external 
ultrasonic wave, and as observed the former is displaced to a greater 

extent than the latter. The net result is that point A will have more 
negative potential and conversely point B more positive potential. 
By placing electrodes at two different terminals of the ultrasonic 
wave, the CVP signal magnitude is detected. 

Figure 1: A schematic drawing illustrating the principle of generation 
of the CVP. The relative movement of anions and cations indicated 
by the arrows upon action of an external ultrasonic field. The points A 
and B yields the respective potential difference, where the actual CVP 
signal is detected. 

Preparation of the selected material concentration is conducted 
through dilution of the principal solution since original silica 
dioxide particles are highly concentrated ranging from 10-20% 
by wt. The dilution process is carried out using Sodium Dodecyl 
Sulphate (SDS) solvent with a concentration of 0.05 % and distilled 
water. Once the suspension is prepared a typically volume of 35mL 
is added to the Perspex source chamber, the sample holder. Carefully 
the chamber is sealed using a cling film to avoid any leakage, and 
to prevent the surrounding water to immerse inside the sample 
chamber. The actual experimental method is similar to the one 
described in literature [44], and herein the 1MHz transducer is 
applied to the source of silica dioxide having a PSD of 35nm with 
0.5 % concentration by weight. The operating frequency is set to 
1MHz and the Colloid Vibration Potential Signal (CVP) is detected 
in the current mode by using the variable gain current amplifier 
with a gain of 104V/A. Analogously, the signal is detected for all 
15 suspensions applying this 1MHz transducer. Afterwards, the 
two remaining transducers, operating at 0.5 and 2MHz central 
frequency, respectively, are introduced in similar fashion to obtain 
the CVP signal magnitude for all suspensions. The position of the 
external sensor is 1mm from the boundary of the source chamber 
and the resulting CVP signal magnitude is then recorded on the 
oscilloscope.

Results and Discussion
The obtained CVP magnitude results are addressed in three 

different parts corresponding to the three experimental parameters: 
the concentration of the suspension, the particle size distribution 
and the excitation frequency. The CVP signal is generated at the 
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boundary of the solution and a typical measurement is presented 
in Figure 2. Both electrical pulses are comprised of 6 cycles, and 
they appear at the entrance and exit of the colloidal source at 
the respective cling film surfaces. Further information related to 
generation of the current is worked out in literature [46-48]. The 
excitation voltage of 9.9V peak to peak is read on the oscilloscope 
and a gain of 40dB provides an actual value of 990V.

Figure 2: Typically, waveforms obtained for Si 70nm colloidal 
suspension comprised of 6 cycles. 

Effect of Concentration

The detected CVP magnitude results are displayed for five 
different silica dioxide colloidal suspensions with different 
principal particle size distribution 35, 70, 100, 165 and 190nm 
respectively for the case of 1MHz transducer in Figure 3, and 
the error bars are well presented ranging up to 5%. The CVP 
magnitude is measured by varying the particle concentration and 
the effect of it is strongly pronounced providing the smallest signal 
magnitude for a value of 0.5% and consequently the highest for 5%. 
The relative significant change in the signal strength is obtained 
for concentration higher than 1%. The CVP magnitude is clearly 
enhanced for higher concentration as reflected by the values for 
5%. At lower concentrations in the range of 0.5-1% crossings occur 
between the values and are most likely due to signal-to-noise ratio 
linked to the actual measurements of the relatively ultra-weak 
signal. The CVP signal magnitude ranges in order of 0.35µA for the 
case of 190nm 0.5% providing the lowest signal and to 19.9µA for 
the case of 100nm 5% having the strongest signal. Similarities are 
observed for the case of the 0.5 and 2MHz transducers associated 
with the concentration.

At lower concentrations it is difficult to mirror the significant 
difference in the signal strength, for instance it is observed 
that silica 70nm provides strongest signal for the case of 2MHz 
transducer, reflecting inconsistency linked at lower concentrations. 
All measurements have a tolerance so possible errors are 
incorporated in measurements for low concentration such as 0.5 
and 1%. Thus, the effect is enhanced for higher concentrations and 
is in good agreement with previous study reported in the literature 
[41]. It is appropriate to look at the conductivity effect since the 
CVP magnitude is inversely proportional to the conductivity. 
Conductivity increases as a function of the concentration and CVP 
is descending as a function of the conductivity but it turns out 

the concentration effect is more predominant compared to the 
conductivity as a result of the pronounced overall increment of the 
CVP magnitude. Our results are also quantitatively comparable to 
the measurements reported in the following report [38].

Figure 3: The CVP signal magnitude obtained using 1MHz transducer 
for five samples of silica dioxide suspensions with three different 
concentrations of 0.5, 1 and 5% by wt.

Effect of Particle Size Distribution

The effect of principal particle size distribution displays an 
interesting feature. The CVP magnitude increases from 35nm up to 
100nm and surprisingly there is an abruptly change as the signal 
magnitude is significantly descending at particle size slightly greater 
than 100nm. The tendency is prominent for the case of 165nm and 
culminates at 190nm. At first sight, the origin of the unexpectedly 
and discontinuous behaviour is explained and identified in terms 
of the surface charge. Further observation indicates that at lower 
concentration (0.5%) the signal strength variation is not clearly 
pronounced and as discussed above potential errors are linked with 
the ultra-weak signal and incorporated within the measurements 
(Figure 4).

Figure 4: The CVP signal magnitude versus the particle size 
distribution measured using a 1MHz transducer.
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For the case of the 0.5MHz transducer, the signal magnitude 
shows the expected behaviour for both the 5 and 0.5% wt. samples. 
The odd observation is present for the case of 1% wt. providing 
signal magnitude of 100nm lower than both 70 and 165nm and 
in addition, the latter size has the peak value of all samples. The 
offset is calculated with the difference being (0.008-0.005) mA 
= 0.003mA, which gives about 38%. It seems quite large but be 
aware that detecting these weak values are extreme challenging 
and the deviation can be large which is experienced during the 
actual measurements. For the case of 1MHz transducer, the results 
are relatively satisfying for both 1 and 5% concentrations. The 
remarkable situation is seen for a single point at 100nm for 0.5% 
concentration, which is slightly lower than the CVP magnitude for 
70nm. Measurements obtained at an excitation frequency of 2MHz 
is to a large extent quite satisfying except for the case of 165nm that 
peaks for both 0.5% and 1% concentrations. 

The main interpretation of the measurements is that the colloid 
vibration potential signal magnitude is descending for larger 
particle size distribution around 165nm. This observation is in 
good agreement with the findings reported earlier in literature, 
which points in direction of a decreasing signal magnitude for 
larger particle size distribution [41]. In that particular study the 
PSD range was different than in current case, however overall, 
the effect of PSD is clearly comparable despite the crossings are 
observed at lower concentrations. The fact is that surface charge 
plays a vital role in electroacoustic measurements. As the surface 
area increases the surface charge density becomes smaller, thus at 
a certain or critical PSD the colloid vibration potential signal drops. 
With this, we infer that the critical particle size range is 100-165nm 
and 190nm for our case. It is well documented that CVP signal 
magnitude increases from small particle size to larger particle size 
and then drops gradually for particle size greater than 165nm. 
This effect has been demonstrated using three different transducer 
frequencies thus providing a relative consistency throughout the 
measurements. 

In order to evaluate the discontinuous behaviour, we consider 
the double layer for a spherical particle. The potential for a flat 
symmetric double layer is given in terms of the particle radius a, and 
it decays exponentially. The surface charge is a function of the Stern 
potential, which is frequency dependent of the concentration of a 
suspension. For large ka the surface charge is directly proportional 
to the Stern potential and thus the concentration. On the other 
hand, in the case of small ka it has a form, which is simultaneously 
proportional to the Stern Potential and inversely proportional to 
the particle radius. Thus, the relationship between surface charge 
and particle size is incorporated in this formalism. For relatively 
small PSD, in order of nanometres, the surface charge increases, 
and is proportional to the concentration. In contrast, as the particle 
size distribution is increased a deficit appears in surface charge. 
The discontinuity in the CVP signal magnitude is thus intuitively 

explained by this effect. Analogously the conductivity effect, 
as discussed for the case of different concentrations, is weaker 
compared to the particle size effect so the net result of increment in 
CVP magnitude is predominantly due to the latter. 

Effect of Frequency

The data is also displayed for three different transducer 
frequencies for all samples in Figure 5, and additionally, an inset 
is presented to provide insights into the samples yielding lower 
signal magnitude. As it appears the frequency spectrum is relatively 
narrow across 0.5-2MHz due to the limitations of the equipment. 
Our measurements reflect that CVP magnitude is descending with 
the applied excitation frequency and few crossings occur for the 
case of 0.5 and 1% concentration. However, it is evident that CVP 
signal magnitude is enhanced at 0.5MHz and the sample with PSD 
190nm exhibits the lowest signal. With this, we believe that most 
of crossings are due to measurement errors clearly indicated by 
the relative error bars. For the case of 5% concentration there is 
only one intersection point at 2MHz providing that 35 nm PSD 
has a higher signal strength than 70nm, this can be explained by 
errors incorporated in the actual measurements or aggregation 
taking place. The effect of CVP signal magnitude increasing with the 
concentration is more substantial for the data of 5% concentration 
as observed earlier. Nevertheless, the measured results are 
quantitatively in good agreement with the theoretical predictions 
by Dukhin & Ohshima, and in addition with O’Brien’s calculations 
for monodispersed and polydisperse particulate systems [32].  

Figure 5: The CVP signal magnitude as a function of the transducer 
frequency displayed for all colloidal suspensions.

In the end, we discuss the effect of attenuation of the acoustic 
wave influencing the measurements. To this end, pioneering work 
has been conducted measuring ultrasound attenuation from several 
systems [38]. Attenuation of ultrasound is frequency dependent 
and for our case this is additionally linked to the measurement 
circuit associated with the transducer, current amplifier and of the 
electromagnetic field. Typically, attenuation at this relatively narrow 
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frequency range (0.5-2MHz) is less than 0.1dB for Silica suspensions 
[38]. Further the attenuation linked to the transducer performance 
is less than 1dB and finally the attenuation gain from the frequency 
response of the current amplifier is 2dB in the particular frequency 
region. The total ultrasound attenuation associated with the CVP 
measurement is estimated to be 3.1dB. Additional factor causing 
attenuation of the high frequency electromagnetic field (or current 
density) inside conductive materials is also called the skin effect, 
which is frequency dependent. 

However, due to the narrow frequency band, for example at a 
distance of 5mm away from the CVP generation, the current density 
ratio for the selected CVP signals at 2.0MHz and 0.5MHz is only 
about 0.99. Consequently, the obtained values provide the total 
attenuation caused by ultrasound and the measurement circuit 
of 3.1dB. Finally, having addressed both attenuation mechanisms 
and their impact, the relative CVP signal increment from 2MHz 
to 0.5MHz yields a factor of 2.5 for our experimental results This 
corresponds to a relative increase of 8dB thus it will play a dominant 
role in the frequency effect presented in Figure 5 compared to the 
attenuation of 3.1dB.

Conclusion
In summary, we have presented an experimentally 

electroacoustic technique to investigate the physicochemical 
properties of different silica suspensions. The measured CVP 
magnitude is increasing as a function of the colloidal suspension 
concentration ranging from 1% by wt. to 5%, where the effect is 
clearly pronounced for the latter case. The relative change in CVP 
magnitude for the case of 100nm providing the highest signal is a 
factor of 22.9 and the actual value for this particular PSD is obtained 
to be 19.9µA. Furthermore, the effect of the PSD on CVP has been 
investigated and it is evidenced that the magnitude is ascending 
at smaller PSD but suddenly descends at larger PSD around 110-
120nm. The relative change of the descending signal magnitude for 
this particular particle size distribution is from the peak value to 
the lowest value providing a difference of 10%. The discontinuous 
behaviour is explained by considering the surface charge, which 
decreases as a function of the particle radius at a certain value. 

The overall lowest value of the CVP magnitude is detected 
for a PSD of 190nm with a value of 0.35µA. In addition, the CVP 
magnitude decreases as a function of the excitation frequency at 
a relatively narrow spectrum of 0.5-2MHz. The relative difference 
obtained for the case of 100nm is 40% so a pronounced effect is 
clearly observed. Attenuation is incorporated in our frequency 
response measurements and have a slightly higher value than 
the overall signal drop. As a matter of fact, we have examined 
three different parameters to investigate the outcome of silica 
suspensions and our results are relatively in good agreement 
with existing knowledge. The points emerged in current study 
can potentially serve for testing of different colloidal systems, 

in addition, further improvement will establish a pathway to a 
standard imaging technique to be utilised in medical science.
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