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Introduction
Calcium orthophosphates (COP) are the main inorganic 

constituent of hard tissue found in animals like bone, dental pieces, 
antlers, tendons, eggshells, seashells, and corals [1–5]. Moreover, 
COP is the precursor for synthesizing hydroxyapatite (HAp). There 
are multiple applications for HAp, including tissue engineering, 
bioactive and non-bioactive coatings, filtering media, heat 
generation, and production of upgradeable chemicals [2,3,6–11]. 
A plethora of methodologies is available in the literature to obtain 
HAp, which includes the use of chemical, mechanical, and thermal 
processes [12]. The raw material, biomass, to produce HAp can be 
bone specimens, bone particles or powder, or bone meal from the 
seafood, bovine, swine, poultry, and sheep food processing industry. 
COP usage and HAp applications involve multiple disciplines like 
medicine, dentistry, engineering, environmental remediation, and 
waste management.

Thermochemical processing of biomass is one route used to 
produce HAp. However, the literature on this topic predominantly 
covers lignocellulosic biomass (LCB) processing. These 
processes presented parallel development when using calcium  

 
orthophosphates (COPB) as the feedstock. In LCB processing, 
multiple projects have studied the effect of variables like reaction 
temperature, atmosphere reactiveness, catalyst usage, pressure, 
and solvents to increase the yield and properties of the products 
[13–15]. Moreover, the heating rates influence the distribution of 
products from processing LCB. For example, during the pyrolysis of 
LCB, slow heating rates favor the production of a solid charcoal-like 
product, meanwhile higher heating rates promote the production 
of room temperature condensable products, known as bio-oil. 
Moreover, heating rates are dependent mainly on particle size, 
reactor temperature, heat transfer mechanisms, and initial biomass 
properties [16–19].

Combustion and pyrolysis are among the literature reported 
thermal processes to obtain HAp [12,20–26]. Likewise, these 
methods can produce bone char, the solid product from bone 
processing, as well as liquid and gaseous products that can 
recover upgradeable organic materials for obtaining chemicals, 
pharmaceuticals, or energy carriers [27,28]. This review covers 
the basics of the thermochemical processing of biomass, and it 
compiles pyrolysis variables and trends to find opportunities for 
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improving yields and product distribution when processing COPB 
into HAp and other value-added products.

Lignocellulosic Biomass Pyrolysis
Pyrolysis is the thermal decomposition of organic matter in 

the presence of an oxygen-poor or deprived atmosphere [29]. 
LCB pyrolysis yields room-temperature non-condensable gases, 
solid charcoal, and liquid bio-oil [30]. The latter is an attractive 
source of organic matter and has a variety of carbohydrate-derived 
compounds that are upgradable into fuels and chemicals. Multiple 
studies report that increasing heating rates, decreasing initial 
biomass particle size, and using proper reactor temperatures lead 
to higher bio-oil yields [31–34]. Fast pyrolysis of LCB uses reactor 
temperatures close to 500°C, particle residence times shorter than 
2s, and heating rates larger than 10°C/s [35,36]. With high furnace 
temperatures, these heating rates are attainable when particles are 
in the millimeter-scale or smaller [37,38]. Also, stage fractionation 
of the bio-oil allows separating compounds, which helps their 
extraction or further upgrading [14,39]. Alternatively, these 

variables influence the properties of the solid product, promoting 
the release of volatile compounds from the biomass, leaving pores, 
and maintaining some of the initial structure [40]. 

These pyrolysis reactions are complex, and heat/mass transfer 
affects the preference of competing pathways. During the pyrolysis 
of LCB, the release of levoglucosan decreases in mass-transfer-
limited cases. Since levoglucosan stays in the liquid phase, it 
thermally degrades instead of leaving as a volatile gas [31,41].

Pyrolysis of COPB in The Literature

Multiple examples of pyrolysis of COPB use different 
technologies, operating parameters, and feedstock to produce HAp 
and other chemicals. The feed stocks processed with pyrolysis are 
mainly meat and bone meal (MBM), raw food waste, eggshells, 
oyster shells, and COP solutions. The products from these pyrolysis 
experiments were bone char, HAp, and chemicals. Figure 1 
summarizes these examples presenting reactor temperatures, 
reactor type, and reacting gas.

Figure 1: Summary of pyrolysis temperatures used in the production of HAp, organized by reactor type and reacting gas or vacuum (Vac.) 
[8,9,22,27,42-58,].

Figure 1 shows a variety of reactors that are also common in 
LCB processing. Thermogravimetric analyzer (TGA) is a powerful 
tool to perform controlled pyrolysis of milligram-scale samples, 
with insight on mass loss time evolution; however, this instrument 
has low heating rates close to 3°C/s (120°C/min) [59,60]. The 
furnace temperature ranges from 450 up to 150 °C in the projects 
reported. Not included in the summary, an arc plasma reactor 
reached temperatures close to 4200°C to treat oyster shells and 
food waste with disinfection and material recovery purposes [58]. 
Not all the projects reported heating rates. Even knowing reactor 
temperatures and particle size, the estimation of heating rates needs 

more input to be determined. However, reactors such as fluidized 
beds or preheated tubular furnaces with a high temperature and 
small feedstock particle size are useful to perform fast pyrolysis of 
LCB [61–63].

Regarding the reaction atmosphere, vacuum, argon, and 
nitrogen prevent oxidative reactions of the volatile compounds 
released during pyrolysis, allowing higher recovery of organic 
compounds in the bio-oil. Use of air as the carrier gas in some of 
the experiments with COPB usually promotes oxidation reactions 
when the organic volatiles are not the main goal of the process, but 
the production of clean bone char.
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Products From COPB Pyrolysis and Their Relation-
ship with Processing Variables

The projects summarized in Figure 1 mainly produced HAp, but 
some of them investigated the liquid products and the bone char. 
As in LCB pyrolysis, the projects with reactors capable of higher 
heating rates produced and collected bio-oil. [27] used a fluidized 
bed reactor to produce liquid yields of up to 43 wt.% of initial MBM 
at 550 °C. Since the biomass initially had fats and proteins, their 
bio-oil included fatty acids and fatty nitriles/amides. However, 
the most abundant were aliphatic compounds with functional 
groups involving either nitrogen or oxygen. [56], using a pilot-scale 
fluidized bed reactor, produced bio-oil that had the same main 
abundant products, but the maximum bio-oil yield was 30 wt.%. 
They also found chlorine-containing compounds that make the 
liquid product difficult to use as a fuel. Starting from bone, [55] 
produced bio-oil as well, in a vertical retort with a relatively low 
heating rate and much less initial organic material. The liquid yield 
was less than 5 wt.% and they found organic acids and asphaltenes 
as predominant products. These publications show a detailed 
product distribution with varying concentrations that present 
other chemicals like phenolic compounds, acids, and aromatics 
with downstream potential for separation or upgrading.

Looking at the solid products side, [46] produced nanosized 
HAp powder with regular spherical morphology using flame spray 
pyrolysis. Moreover, the stoichiometry was right for enhanced 
properties of densification, osseointegration, and bioreactivity. 
Flame pyrolysis, in general, presents high heating rates and high 
reaction temperatures. [51] produced HAp by pyrolyzing an aerosol. 
The used reactor was a 500 °C tubular furnace, much cooler than in 
the flame pyrolysis case. The product of the process were hollow 
spherical micrometer-scale particles with homogeneous chemical 
composition, but uneven crystal morphologies.

Further thermal treatment at 1050°C allowed obtaining 
changes in crystallite size and morphology. [8] slowly pyrolyzed 
specimens of porcine and bovine bone to understand various 
physical, mechanical, and electrical properties of the resulting solid 
product as a bone substitute in medical applications. In general, 
the products obtained were highly porous and with mechanical 
properties like those of human bones. Additionally, products from 
950°C furnace pyrolysis reached close to stoichiometric HAp, Ca/P 
ratios similar to 1.67. [64] evidenced the changes in the crystalline 
structure of bone char when increasing the furnace pyrolysis 
temperature. With low heating rates in this type of reactors, the 
duration of the process provoked changes in the structure of the 
char. They report that the chemical structure did not change by 
pyrolysis. Additionally, they did not find HAp degradation, an idea 
commonly supported in the literature, except by [64,65].

Opportunities with The Pyrolysis of COPB

Optimization of pyrolysis process variables, mainly heating 
rates and furnace temperature, combined with a thorough grasp 
of feedstock properties, can open routes to increase quantity 
and quality of bio-oil from COPB. Moreover, using pyrolysis as 
a pretreatment of the HAp precursors, such as MBM, may lead 
to recovering organic chemicals from otherwise removed and 
rejected materials. Stage fractionation of bio-oil compounds 
obtained from COPB pyrolysis, especially the ones that carry fats 
and proteins, may improve the collection of value-added products, 
either directly or after upgrading steps. Understanding the effect 
of pyrolysis variables on stoichiometric composition, crystallinity, 
chemical structure, and morphology of HAp will allow tailoring 
the process to produce better materials for medical applications. 
Microgram-scale pyrolysis furnaces with high heating rates and 
short processing times will accelerate the study of pyrolysis 
conditions and products. Moreover, these reactors can input their 
gaseous product for compound identification and quantification 
into specialized analyzers.

Broadening the acceptable feedstock options and qualities 
for pyrolysis can expose pathways to manage wastes otherwise 
landfilled or poorly managed. Moreover, this may lead to adding 
value to the waste streams, consequently activating economic 
activity in the waste management sector. Techno-economic analysis 
of pathways to process biomass to obtain value-added products 
can reveal feasible projects that can promote their scalability and 
proliferation.
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