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Abstract

B-Thalassemia is one of the most monogenic autosomal recessive disorder characterized by defective production of the hemoglobins (3-chain.
Definition of the B-globin genotype is necessary for genetic counselling in the carriers, and for predicting prognosis and management options in the
patients with thalassemia. Genetic analysis of 3-thalassemias routinely relies on polymerase chain reaction (PCR) and gel electrophoresis. The aim of
this study is to develop a new procedure, a nanopolymer-based Lab-on-a-chip based biosensor for the real-time multiplex analysis of 3 thalassemia
mutations from Cell-Free DNA. In this study, biospecific interaction analysis (BIA) employing quartz-cristal microbalance (QCM) and biosensor
technologies was applied to the analysis of multiple mutations of the human (-globin gene. To this aim, large target polymerase chain reaction
products were immobilized on genosensor electrode and then probes detecting IVSI-110 -thalassemia mutations were sequentially injected.

The results obtained allow to conclude that discrimination between normal subjects, heterozygous, and homozygous patients is readily achieved
for all the five mutations by PCR amplification of genomic DNA containing all the regions corresponding to the same mutations, immobilization of the
same PCR products, and hybridization. The developed biosensor serves as a specific result for all the five mutations. It could accurately discriminate
the mutations. Because of low costs, fast results, specificity and high detection/information effectiveness as compared with conventional prenatal

diagnosis methods.
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Abbreviations: BIA: Biospecific interaction analysis; DNA: Deoxyribonucleic ncid; PCR: Polymerase chain reaction; QCM: Quartz-cristal microbalance

Introduction

B-thalassemia is the most common hemoglobin genetic
disorders and it is caused by the absent or reduced production of
the hemoglobins 8 globin chains [1,2]. B-thalassemia is prevalent in
tropical and subtropical world regions where malaria was and still
is epidemic, but as a consequence of the recent massive population
migrations, 3-thalassemia has become a relatively common clinical
problem [3,4]. Therefore rapid genetic disorders identification
systems like genosensor technologies gain importance for this
health problem [5,6]. The DNA hybridization events has become
the main principle in the construction of genosensor devices
which consisting of single-stranded DNA (ssDNA) probes layer
immobilized on a working electrode surface in order to recognize its
complementary DNA target to form a DNA double helix formation.

This hybridization event is converted into a quantified signal
by the transducer in the form of piezoelectric resonance and

electrochemical for detection [7]. The electrochemical transducer
has gained an interest for DNA hybridization detection because of
its simplicity and direct convert to the hybridization events into
the electrical signal [8,9]. The major advantages of electrochemical
genosensor compared to other DNA sensor are it is amenable to
miniaturization, compatible with microfabrication technique,
required simple instrumentation, provide a remarkable sensitivity
and selectivity, poses rapid response, easy to operate and has high
portability, minimum power requirements and low-cost production
[6,10].

Materials and Methods
Chemicals

All chemicals used in genosensor were purchased from Sigma
Chemical Co., USA. All solutions were prepared freshly just before

experiment.
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Apparatus

Palm Sens potentiostat, and corundum ceramic based screen
printed gold quartz cyristal electrode combined with the reference
Ag/AgCl electrode, and the auxiliary AuPd (98/2%) electrode
were used to perform the electrochmeical measurements. In the
experiments, automatic pipets, a magnetic stirrer, and a thermostat
were used. Ultra-pure water in the preparation of solutions was
obtained water purification system.

Preparation of the Genosensor

Prior to coating with nanopolymer, the surface of au quartz
cyristal electrode was polished with alumina slurries on microfiber
cloth to obtain a mirror surface. The polished electrode was rinsed
with double distilled water. In order to remove undisered absorbable
particules, the electrode was sonicated first in pure ethanol and
later in double distilled water for 10 minutes. In the next step,
the electrochemical cleaning of electrode was accomplished by
five successive cyclic voltammetric sweeps between -1.0 and +1.0
Vin 0.1 M HNO3 solution [11]. The bioactive layer was prepared
by immobilizing DNA probes on the gold electrode with self
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assembled mono layer of Poly-Hema-Mac on the gold surface. All
the measurements were executed in a thermostatic reaction cells
[12,13], contained varying amounts of DNA samples concentration
on the bioactive surface.

Principle of measurement

The principle is based on the specific DNA hybridisation
between DNA probes and ssDNA samples. Finally, the resonance
difference during these reactions was measured by quartz cyristal.

Results and discussion

Electrochemical characterisation of the genosensors
plasmon resonance

Genosensors cyclyc voltammogram obtained between -0.3
and 0.8 volt, this range used working range of genosensor (Figure
1). When using different concentrations normal, 3 thalassemia
heterozygote and 3 thalassemia homozigote of DNA samples on the
genosensors working electrode surface the resonance classified by
hybrisidation affinity (Figure 2).
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Figure 1: Cyclyc voltammogram of the genosensor.
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Figure 2: The plasmon resonance of normal, heterozygote and homozigote samples frequance. (Grey: heterozygote, Red: normal, Blue:
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Effect of pH on the biosensor response

Biosensors based on an hybrizidation depends on a suitable
buffer system and pH medium for obtaining the best responses

[14]. To detect the effect of the pH value on the biosensor response,
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different buffer systems were investigated. For this aim, acetate (50
mM, pH 4.0-5.0-6.0), phosphate (50 mM, pH 7.0), and Glycine/NaOH
(50 mM, 8.0) buffers were used in the experiments. The optimum
pH value was 7.5. Below and above pH 7.5 causes a decreases in the
biosensor response (Figure 3).
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Figure 3: pH optimization curve.

Measurement of different concentrations of DNA sample

25- 100 pg/ml of DNA samples concentration were prepared
and measurements were taken under optimized conditions. When

the DNA concentration increases, the response current rises at the
mutation levels interval (Figure 4).
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Figure 4: Measurement of different DNA amount on the genosensors working electrode surface.

Conclusion

As a result of this work, determination of 3 thalassemia DNA
samples by using genosensor system is a new approach [15,16].
Determination of point mutations with this method is also possible
at low concentrations. According to literature the genosensor
studies have known to be very sensitive, specific, simple and less
time-consuming methods. Consequently, we can be suggested
that development of the method would be an original and useful
procedure for DNA samples determination. Therefore next step
towards making the sensor for in vivo studies and more portable
involves further miniaturization allowing in situ monitoring of
signals.
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