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Mini Review

Abstract

Next-Generation Sequencing is an evolving technology employed in the field of cancer biology. This mini review is intended as a brief overview 
of NGS for the clinical utility in colorectal cancer. The pathogenesis and treatment of colorectal cancer will continue to evolve as NGS is applied to 
more patient samples, correlating tumor biology and outcomes.
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Introduction
Colorectal Cancer (CRC) is the third most common cancer 

worldwide resulting in over a half million deaths annually [1]. Shortly 
after the advent of Next-Generation Sequencing (NGS) in the mid 
2000’s, it was utilized to examine tumor biology with applications 
in cancer diagnosis and detection as well. There are several 
different NGS platforms that utilize disparate deoxyribonucleic acid 
(DNA) preparation and sequencing methods. All NGS techniques 
involve massive amounts of parallel DNA templates with resulting 
sequencing outputs in a digital format [2]. These large files of 
sequencing data undergo additional filtering and processing to 
ultimately give a user their desired information [3]. Additionally, 
all NGS platforms have associated error rates, differences in costs, 
advantages and disadvantages [4]. The previous gold standard to 
evaluate DNA was with Sanger sequencing, which requires a 15-
25% allele frequency to detect a mutation [5]. NGS can detect allele 
frequencies that occur at a frequency of 2-10% with additional 
DNA preparation steps to reduce error rate detection below 10-6 
[2,5]. While NGS and its clinical application in the study of cancer  

 
are continually evolving, this mini review will describe current 
utilizations in multiple areas of CRC.

Whole Genome Sequencing for CRC
A prominent application of NGS when it was first introduced 

was for drastically reducing the cost and time to sequence the 
entire genome of a species. Thousands of species’ genomes have 
been fully sequenced, identifying common variants. Additionally, 
whole genome sequencing for many human diseases can uncover 
unique characteristics like genomic rearrangements and gene 
fusions that have been discovered in CRC [6]. Other investigators 
have utilized whole genome sequencing of plasma to identify 
biomarkers that may reveal response to anti-EGFR therapies [7]. 
There is some evidence that the gut microbiome may play a role 
in CRC development or progression [8]. These bacteria species 
have been identified with NGS through whole genome shotgun 
sequencing of 16S rRNA in feces samples [9]. Such large-scale 
approaches to sequencing yield lower read coverage, limiting the 
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sensitivity and specificity of reads. In turn, this limits the clinical 
utility of NGS, leading many to prefer targeted sequencing [10].

Targeted Sequencing for CRC
Targeted sequencing allows the similar number of base pairs 

as whole genome sequencing to be focused on specific exons of 
interest [10]. While this decreases the number of genes analyzed, 
the “depth” of reads increases, detecting less common mutations 
and giving greater reliability to sequencing outputs. Several 
dozen genes have been implicated in CRC with microsatellite 
instability (MSI) and single nucleotide polymorphisms (SNP) being 
increasingly investigated with NGS to determine clinical relevancy.

Single nucleotide polymorphisms (SNP) are defined as point 
mutations at a specific position in the genome. In colorectal 
cancer, common genes at which SNPs occur are TP53 (56.7%), 
KRAS (48.1%), and PIK3CA (9.3%), among others [11]. Identifying 
these mutations from patient tumor samples is used to drive 
decisions on neoadjuvant or adjuvant therapy in clinical practice. 
For example, anti-EGFR antibodies, cetuximab and panitumumab, 
have greatly improved CRC patient outcomes [12]. The utility of 
investigating multiple genes and associated patient outcomes has 
been demonstrated with discovering ineffective anti-EGFR therapy 
in patients with concomitant BRAF or PIK3CA mutations are 
present [11]. Additional mutations such as KRAS and NRAS have 
found patients to be non-responders to anti-EGFR therapy. Multiple 
other studies involving several hundred CRC patients have reported 
similar tumor mutations with concomitant patient outcomes [13]. 
Using NGS enables sub categorization of CRC and is helping to 
identify responders from non-responders to treatment, shaping 
future targeted therapies that will be offered to patients.

Microsatellite instability is the spontaneous acquisition or 
loss of nucleotides from regions of repeated nucleotides due to 
impaired DNA mismatch repair [14-16]. MSI has been extensively 
studied in colorectal cancer since first reported in 1993 and is a 
marker of favorable prognosis because therapies can be developed 
for the immunogenic nature of these tumor types [17-19]. There 
are several methods for detecting MSI such as mSINGS and MSIseq 
using targeted sequencing data with similar results to standard 
polymerase chain reaction (PCR) based detection [16,20,21]. 
The advantage of using NGS to detect MSI is scalability, cost-
effectiveness, and reproducibility of quantifiable data for statistical 
purposes.

Cell Free DNA in CRC
NGS has also been applied to the concept of a “liquid biopsy” 

that is not performed from a tumor sample. While a blood sample 
is commonly referred to as a liquid biopsy, there are a variety of 
other bodily fluids, such as saliva, urine, and feces, from which cell 
free DNA can be obtained. Cell free DNA (cfDNA) refers to any DNA 

present in plasma while cell tumor DNA (ctDNA) is DNA that only 
comes from a tumor [22].

In a multi-institutional study of 1,397 patients with CRC, 
using cfDNA from blood samples detected single-nucleotide 
variants (SNV) that were similar to tumor sample sequencing [23]. 
Identifying liquid biopsy DNA that is similar to tumor sample DNA 
portends a potential significant role in screening for CRC.

Genetic Screening for CRC
Approximately 5% of CRC patients have a hereditary CRC 

syndrome such as Lynch syndrome (LS) or familial adenomatous 
polyposis (FAP) [24]. Patients with hereditary CRC syndromes 
present earlier in life than sporadic CRC, making diagnosis important 
so that other family members can undergo age appropriate 
screening. Lynch syndrome is the most common heredity CRC 
syndrome due to autosomal dominant mutations in MMR genes 
[25]. Traditionally, detection of LS has been performed with several 
steps including immunohistochemical staining for MMR proteins or 
MSI [26]. A study assessing 419 patients with LS found that using 
NGS for tumor sequencing is simpler and analytically superior to 
current screening methods [26. Similar results of NGS accuracy 
have been reported in other populations and with other heredity 
CRC syndromes [24].

Conclusion
While the role of NGS continues to evolve, the ability to identify 

a litany of targeted genes at one time, from a variety of DNA sources, 
is a powerful tool for both researchers and clinicians. Continued 
research using NGS techniques will likely help to identify cancers 
sooner, become a part of screening and/or surveillance guidelines, 
and help the push toward personalized medicine.
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