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Abstract

Next-Generation Sequencing is an evolving technology employed in the field of cancer biology. This mini review is intended as a brief overview
of NGS for the clinical utility in colorectal cancer. The pathogenesis and treatment of colorectal cancer will continue to evolve as NGS is applied to

more patient samples, correlating tumor biology and outcomes.
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Introduction

Colorectal Cancer (CRC) is the third most common cancer
worldwideresultingin overahalfmillion deathsannually [1]. Shortly
after the advent of Next-Generation Sequencing (NGS) in the mid
2000’s, it was utilized to examine tumor biology with applications
in cancer diagnosis and detection as well. There are several
different NGS platforms that utilize disparate deoxyribonucleic acid
(DNA) preparation and sequencing methods. All NGS techniques
involve massive amounts of parallel DNA templates with resulting
sequencing outputs in a digital format [2]. These large files of
sequencing data undergo additional filtering and processing to
ultimately give a user their desired information [3]. Additionally,
all NGS platforms have associated error rates, differences in costs,
advantages and disadvantages [4]. The previous gold standard to
evaluate DNA was with Sanger sequencing, which requires a 15-
25% allele frequency to detect a mutation [5]. NGS can detect allele
frequencies that occur at a frequency of 2-10% with additional
DNA preparation steps to reduce error rate detection below 10-6
[2,5]. While NGS and its clinical application in the study of cancer

are continually evolving, this mini review will describe current

utilizations in multiple areas of CRC.

Whole Genome Sequencing for CRC

A prominent application of NGS when it was first introduced
was for drastically reducing the cost and time to sequence the
entire genome of a species. Thousands of species’ genomes have
been fully sequenced, identifying common variants. Additionally,
whole genome sequencing for many human diseases can uncover
unique characteristics like genomic rearrangements and gene
fusions that have been discovered in CRC [6]. Other investigators
have utilized whole genome sequencing of plasma to identify
biomarkers that may reveal response to anti-EGFR therapies [7].
There is some evidence that the gut microbiome may play a role
in CRC development or progression [8]. These bacteria species
have been identified with NGS through whole genome shotgun
sequencing of 16S rRNA in feces samples [9]. Such large-scale

approaches to sequencing yield lower read coverage, limiting the
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sensitivity and specificity of reads. In turn, this limits the clinical
utility of NGS, leading many to prefer targeted sequencing [10].

Targeted Sequencing for CRC

Targeted sequencing allows the similar number of base pairs
as whole genome sequencing to be focused on specific exons of
interest [10]. While this decreases the number of genes analyzed,
the “depth” of reads increases, detecting less common mutations
and giving greater reliability to sequencing outputs. Several
dozen genes have been implicated in CRC with microsatellite
instability (MSI) and single nucleotide polymorphisms (SNP) being
increasingly investigated with NGS to determine clinical relevancy.

Single nucleotide polymorphisms (SNP) are defined as point
mutations at a specific position in the genome. In colorectal
cancer, common genes at which SNPs occur are TP53 (56.7%),
KRAS (48.1%), and PIK3CA (9.3%), among others [11]. Identifying
these mutations from patient tumor samples is used to drive
decisions on neoadjuvant or adjuvant therapy in clinical practice.
For example, anti-EGFR antibodies, cetuximab and panitumumab,
have greatly improved CRC patient outcomes [12]. The utility of
investigating multiple genes and associated patient outcomes has
been demonstrated with discovering ineffective anti-EGFR therapy
in patients with concomitant BRAF or PIK3CA mutations are
present [11]. Additional mutations such as KRAS and NRAS have
found patients to be non-responders to anti-EGFR therapy. Multiple
other studies involving several hundred CRC patients have reported
similar tumor mutations with concomitant patient outcomes [13].
Using NGS enables sub categorization of CRC and is helping to
identify responders from non-responders to treatment, shaping
future targeted therapies that will be offered to patients.

Microsatellite instability is the spontaneous acquisition or
loss of nucleotides from regions of repeated nucleotides due to
impaired DNA mismatch repair [14-16]. MSI has been extensively
studied in colorectal cancer since first reported in 1993 and is a
marker of favorable prognosis because therapies can be developed
for the immunogenic nature of these tumor types [17-19]. There
are several methods for detecting MSI such as mSINGS and MSIseq
using targeted sequencing data with similar results to standard
polymerase chain reaction (PCR) based detection [16,20,21].
The advantage of using NGS to detect MSI is scalability, cost-
effectiveness, and reproducibility of quantifiable data for statistical

purposes.

Cell Free DNA in CRC

NGS has also been applied to the concept of a “liquid biopsy”
that is not performed from a tumor sample. While a blood sample
is commonly referred to as a liquid biopsy, there are a variety of
other bodily fluids, such as saliva, urine, and feces, from which cell
free DNA can be obtained. Cell free DNA (cfDNA) refers to any DNA
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present in plasma while cell tumor DNA (ctDNA) is DNA that only

comes from a tumor [22].

In a multi-institutional study of 1,397 patients with CRC,
using cfDNA from blood samples detected single-nucleotide
variants (SNV) that were similar to tumor sample sequencing [23].
Identifying liquid biopsy DNA that is similar to tumor sample DNA
portends a potential significant role in screening for CRC.

Genetic Screening for CRC

Approximately 5% of CRC patients have a hereditary CRC
syndrome such as Lynch syndrome (LS) or familial adenomatous
polyposis (FAP) [24]. Patients with hereditary CRC syndromes
presentearlierinlife than sporadic CRC, making diagnosisimportant
so that other family members can undergo age appropriate
screening. Lynch syndrome is the most common heredity CRC
syndrome due to autosomal dominant mutations in MMR genes
[25]. Traditionally, detection of LS has been performed with several
steps including immunohistochemical staining for MMR proteins or
MSI [26]. A study assessing 419 patients with LS found that using
NGS for tumor sequencing is simpler and analytically superior to
current screening methods [26. Similar results of NGS accuracy
have been reported in other populations and with other heredity
CRC syndromes [24].

Conclusion

While the role of NGS continues to evolve, the ability to identify
alitany of targeted genes at one time, from a variety of DNA sources,
is a powerful tool for both researchers and clinicians. Continued
research using NGS techniques will likely help to identify cancers
sooner, become a part of screening and/or surveillance guidelines,

and help the push toward personalized medicine.
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