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Abstract

The pathologic hallmark behind Parkinson’s disease (PD) is the loss of dopaminergic neurons from the substantia nigra pars compacta (SNpc) 
and accumulation of lewy bodies (mis-folded proteins). Clinically, in PD the patient encounter with both motor and non-motor symptoms, motor 
symptoms caused by loss of dopaminergic neurons from the substantia nigra, presented with tremor, bradykinesia and muscle rigidity along with 
impaired gait, and posture. Recent researches have enlightened the role of different type of stem cell and their clinical application. Stem cell therapy 
has shown promising effects on the lifestyle and behavioral changes in patients with Parkinson’s disease. In this review article we will be discussing 
about the recent advancements in stem cell therapy for Parkinson’s disease.
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Introduction
Parkinson’s disease (PD) is known to be second most common 

neurodegenerative disorder after Alzheimer’s disease [1] which is 
becoming a challenge to deal with.

Epidemiological study has revealed that 5 million people after 
age of 50 years worldwide are affected with PD and it will increase 
in next 20 years [2]. PD is most common in men (1.5 times) than 
women [3]. Its incidence is higher in developed countries [4] due  

 
to increased age group. Therefore, age is an important risk factor 
for PD.

Genetic mutations include those in alpha-synuclein (SNCA), 
Parkin, PINK, DJ-1 (PARK6), Leucine-rich repeat kinase2 (LRRK2), 
PARK9, GBA (glucocerebrosidase), DNAJC6, SY NJ1, ATXN2, ATXN3, 
GCH1, DCTN1 etc. [5]. Among these genes SNCA, Parkin, DJ-1, PINK-
1 are most common gene mutations resulting in PD [6]. People with 
close relatives with PD do increase their risk of getting PD but still 
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the risk is 2-5% until family has a known mutated gene of PD [7]. 
Other risk factor is the exposure of the environmental toxins [4,8] 
such as pesticides, exposure to heavy metals, smoking, interstitial 
toxins which have shown a marked decrease in dopaminergic 
neuronal cells [9,10]. According to the scientists, PD is not a fatal 
disease but by time it worsens the normal functions [11].

Treatment of PD with the transplantation of gene is considered 
to be one of the promising approaches towards the treatment of PD 
[12]. Over last two years investigators relocated the dopaminergic 
(DA) cells like adrenal medullary dopaminergic cells, into the 
striata of PD animal models [13,14]. In recent time, researchers 
manipulated growth factors (FGF-2b, FGF8, SHH) and produced DA 
neurons from rodent embryonic stem cell and transplanting them 
into striata of PD animal model. Surprisingly, these transplanted 
neurons persisted and integrated into normal brain function in 
PD of animal model [15,16]. Researchers can produce yet more DA 
neurons to transplant into brain of PD animals by overexpression of 
Nurr 1 in embryonic stem cell [17-20].

Most common tools for reproducing the brain cells include 
embryonic stem cell (ESCs), mesenchymal stem cell (MSCs), neural 
stem cell (NSCs) and induced pluripotent stem cell (iPSCs). Several 
mechanisms like cell replacement, mediating re-myelination, 
trophic factor and modulation of inflammation can be useful in 
Stem cell therapies [5].

From years, researches are going on for the treatment and 
management of PD because it is very common disease in old 
population in the developed countries. In the past decades, PD was 
been treated with drugs which has some very severe adverse effects 
such as wearing off phenomena, motor fluctuation, and abnormal 
movements as dyskinesia. Beside the drug therapy, surgical 
treatment is not the option preferred at early stage of disease and it 
even results in some serious after effects.

The purpose of writing this review article was to highlight 
the recent approach towards the advancement in the treatment 
of Parkinson disease with stem cell therapy. We aim to treat PD 
in future with less symptoms and side effects and to minimize the 
incidence of PD in future population. Hoping these stem cell therapy 
will help to reduce the global burden of PD.

Though these new treatments of PD will help in reducing the 
weightage of PD but much work and new tools are still required for 
the management and decreasing the graph of PD.

The idea of cell replacement therapy was emerged in 1979, and 
it was decided to use intra-cerebral grafts of fetal mesencephalic 
tissue (rich in dopaminergic neuroblasts) in rats [21,22], but 
clinically it was not implemented because it was not ethically 
approved to use the tissue from the aborted fetuses and on the 
other hand even difficult to collect human fetal tissue containing 
dopaminergic neurons, so it was not performed.

A study done on four patients with PD, by Oslon, Seiger and 
Backlund [23,24] using autologous graft of adrenal medulla cells 
into striatum to provide a catecholamine source to the cells, but no 
good results were produced, so the method was dropped out.

Further in 1987, first intra-striatal implantation of human 
fetal mesencephalic tissue (taken from 6-9-week old fetus) was 
performed on patient with PD [25], the aim was to see whether the 
denerveted striatum could again be reinnervated and transplanted 
cell could survive, this studies continued until late 1990s.
However,this clinical studies was terminated after patients develop 
dyskinesia [26] and lack of efficacy. Another study was done on 
patients in Lund, Sweden in the late 1980s to mid-1990s who 
receive of fetal cell transplantation [27,28] after 15 and 18 years 
of post-transplantation follow-up the patients motor activity was 
improved but the non-motor activity didn’t show any improvement 
and graft induced dyskinesia’s (GIDs) remains the problem of all 
the patients [29-31]. The postmortem studies of these patients 
reveal that the presence of Lewy bodies of about range of 2-8% and 
about 80% of increased levels of alpha synuclein in cell bodies, with 
premature aging of cell. Furthermore, it suggests that with the time 
the grafted neuron reduces the dopamine transporter which has 
its effects on the grafted cells [32-34]. In early 2000s TRANSEURO 
European Union-funded multicenter started to figure out the stem 
cell related GIDs and other disorders. They set a protocol to choose 
patients for transplant, emphasized on young age group with early 
stage disease.

According to a Commentary published on 2017, Zuo and his 
colleagues transplanted the human stem cells (hNSCs) on an 
animal model but instead of focusing on the recovery of nigro-
striatal dopaminergic pathway they assess the sub ventricular zone 
(SVZ), which is a major neurogenic niche(stem cell-enriched brain 
region).This study leads to underexplored putative regenerative 
pathway in PD. After testing and imaging, better performance was 
seen in motor and cognitive task compared to lesion control animal, 
hence prove the key role of SVZ in recovery. In a nutshell this study 
suggest that the transplanted stem cell did not directly stimulated 
the functional activity in PD animals but it promote the activity of 
neurogenic SVZ through the resident stem cells within the niche, to 
recruit a complex brain regenerative machinery [35].

Molecular and Genetic Processes in Parkinson’s 
Disease

Hallmark pathology of Parkinson’s disease is loss of dopamine 
neurons in the substantia nigra pars compacta (SNpc) and 
diminution of dopamine levels in the striatum [36]. Experiments 
show that PD has impacts on prefrontal cortex (PFC), anterior 
cingulate gyrus and/or fronto-striatal pathways as well [37].

Though the exact mechanism of loss of DA neurons in SNpc is 
not well known. However, the commencement and development 
of PD may be related to protein misfolding and accumulation, 
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over-excitation , oxidative trauma, failure to generate energy, 
mitochondrial destruction, impairment of pathways of protein 
clearing, cell-autonomous mechanisms and “prion-like protein 
infection” [38-40]. The foremost hypothesis for PD amongst 
them is protein misfolding and its subsequent accumulation in 
intracellular spaces [41,42]. Lewy bodies (LB) is the chief misfolded 
amyloid protein in intracellular spaces of SNpc neurons in PD 
[38,42,43] containing various misfolded amyloid proteins , which 
includes alpha-synuclein (SNCA), phosphorylated tau (p-tau), and 
amyloid beta protein (Aβ) [42,44]. Sporadic PD (SPD) has various 
environmental toxins linked to it, and it can be simulated to some 
extent in experimental PD models of animals, for instance the use 
of paraquat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) [45,46]. In contrast to SPD, familial cases are infrequent, 
and do not exhibit the symptoms of PD like tremor, bradykinesia 
and muscle rigidity along with impaired gait, and posture as well 
as frontostriatal-mediated executive dysfunction, including deficits 
in attention, speed of mental processing, verbal disturbances, 
impairment of working memory and impulsivity. This makes it 
harder in understanding the pathogenesis of PD [41,47].

Limited symptomatic treatments for PD currently existing, 
are applicable only to a limited amount of patients. Furthermore, 
permeability issues, short-life span and adverse effects are the chief 
concerns for the use of these drugs in treating PD. Recent advances 
in stem cell transplantation [48-50] and gene therapies [51,52] 
serve as a substitute of drugs in the treatment of PD. For instance, 
application of genetically engineered DA neurons are proved to be 
beneficial in PD mouse models [50,53]. Also, improper functioning 
of metabolic pathways in PD are corrected by scientists by the use 
of recombinant adeno associated viral vectors (rAAV) or lentiviral 
[54]. Likewise, current generation of gene editing technique, known 
as, clustered regularly interspaced short palindromic repeats 
associated protein 9 (CRISPR-Cas9), have shown to be worthwhile 
in the treatment of PD [52].

Accumulation of Misfolded Proteins

Accumulation of alpha-synuclein (SNCA)

Intracellular accumulation of Lewy bodies in DA neurons of 
SNpc [55] containing alpha synuclein (SNCA) and other associated 
proteins is the hallmark pathology in PD [44]. On examining 
the brains of numerous PD patients, Gomperts and colleagues 
established a mash of amyloid deposits in their brain, and it was 
related to cognitive regression without dementia, which proposed 
that amyloid adds to cognitive, but not motor regression with time 
[56]. In the same way, Hepp and colleagues proposed that the 
degree and the level of extension of Aβ pathology adds to congnitive 
dys-functioning in PD with dementia (PDD) and dementia with 
Lewy bodies (LBD) [57]. The oligomers, proto-fibrils, and fibrils of 
SNCA or other misfolded amyloid proteins produce a pore in the 
membrane and triggering the death of neurons by over-excitation, 

energy failure, oxidative stress and neuroinflammation [44,58]. 
Likewise, SNCA gene mutations (for e.g. E46K, H50Q, A53T and 
A30P) are responsible for early beginning, quick progression and 
greater association of dementia in familial PD [59]. SNCA when 
overly expressed in animal and cell culture models indicated 
aggregation of SNCA in mitochondria [60]. Overexpression of 
SNCA in mice indicated mitochondrial lipid abnormalities and dys-
functioning of electron transport chain [61], and the sensitivity of 
mice to mitochondrial toxins became less [62]. Studies of human DA 
neurons in PD brain also showed the presence of respiratory chain 
dysfunction, oxidative stress and DNA damage in mitochondria 
[63].

Tau hyper-phosphorylation (p-tau)

Tau hyper-phosphorylation produce neurofibrillary tangles 
(NFT), that are paired helical fragments of tau, a characteristic 
feature of fronto-temporal dementia with parkinsonism (FTDP) 
[64]. This neurodegenerative disease is related to chromosome 
17, with buildup of p-tau in SNpc and cortex [64]. Co-localization 
of p-tau with LB, often occurs in sporadic PD [65]. Also, mutation 
in the gene encoding microtubule associated protein (MAPT) 
produces rise in the levels of p-tau accumulation [65]. The p-tau 
is also related to mutations in LRRK2 gene [47]. Co-localization 
of NFTs with SNCA in LB cause disruption in the structure of DA 
neurons, and this causes quick detoriation and death of DA neurons 
[64,66,67].

Genetic Mutations in Parkinson’s Disease

Parkin is a protein that plays an important role in ubiquitin-
proteasome system, which aids in destruction of misfolded 
proteins. Its mutation results in accumulation of misfolded proteins 
in SNpc [68]. Mutations of parkin in idiopathic PD patients and 
in mice that have low levels of parkin, exhibit loss of neurons in 
locus coeruleus of the midbrain [68]. Parkin also control DA levels 
that are released by SNpc [36]. DJ-1 (PARK7) is a dimer which is 
present in the cytoplasm, nucleus, and mitochondria, and PD in 
early onset is related to this dimer [69]. Its mutation and deletions 
result in autosomal recessive PD [45]. It also co-localizes with 
p-tau, SNCA and produces the pathologies of synuclein and p-tau 
[57]. PINK1 (PARK6) produces a protein called PTEN-induced 
putative kinase-1, which is located in mitochondria and defend the 
neurons against stresses that cause mitochondria l injury [70]. Its 
mutations are seen in PD, where it makes the cells susceptible to 
damage [70,71]. Its mutations are also related to impairment of 
mitochondrial functions as well as destruction of SNpc neurons, 
that results in PD [70]. 

Excessive Glutamate Production

Deficiency of DA neurons cause the sub thalamic nuclei (STN) to 
become over excited, that results in enhanced glutamate production 
[72]. This then binds to NMDA or AMPA receptors and opens 
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calcium channels. Increased levels of calcium cause mitochondrial 
injury and generate ROS, which cause oxidative injury [73,74].

Alterations Involving Protein Degradation Pathways

Ubiquitin-proteasome system (UPS): Its dysfunction causes 
accumulation of amyloid proteins, for instance LB, and intense 
neurodegeneration in SNpc [75,76]. Molecular chaperones known 
as heat shock proteins (HSP). HSP70 has an ATPase domain, whose 
mutation increases the toxicity of SNCA [77]. Likewise, its excess 
expression in rat brain portions, decreases the toxicity of rotenone 
or MPTP induced neurotoxicity [78].

Mitochondrial Injury and Oxygen Trauma

ATP production in the cells is affected due to impaired activity 
of complex-I in mitochondria, which results in cellular death [79]. 
Brain monoamines, including DA and 5-HT serve as antioxidants 
[80]. DA degradation by monoamine oxidase type B (MAO-B), along 
with the available ground state oxygen, results in ROS production 
[81]. In PD, there is a rise in oxidative stress markers along with 
related changes (e.g damage to DNA, proteins and fats by free 
radicals) [81].

Prion Hypothesis

In this hypothesis, it is proposed that SNCA, analogous with 
prion proteins, extends throughout the CNS, and contaminate 
nearby novel and fit neurons, and it goes on until most of the 
damage has occurred. Thus, this type of infection may be the cause 
of development and neuronal degeneration in certain sorts of PD 
[42].

PD leads to temperamental, social and economical 
disintegration to patient’s relatives, friends and family. Unluckily, 
efficacious remedies are not presently achievable, despite of that, 
rapid detection and suitable mitigative therapies can offer a much 
effective and prolonged life span for the patients of PD.

Sources of Stem Cells

Bone-marrow derived mesenchymal stem cells (BM-MSC) and 
olfactory ensheathing cells (OEC) have been used for the treatment 
of PD, but these have less potential in differentiating to DA neurons 
[82-84]. Presently, researchers are working on carrying out studies 
on different cell lines which include neural stem cells (NSCs) 
and human fetal dopamine (DA) neurons, embryonic stem cells 
(ESCs), induced pluripotent stem cells (iPSCs) and directly induced 
dopamine neurons (iDA neuron) generated from autologous 
somatic cells [85-87].

Recent Advancements in Different Stem Cell 
Sources

Neural stem cells (NSCs) and human fetal DA neurons

In 1965, Neural stem cells (NSCs) were documented at first 
[88] and were characterized as granule cells having greater degree 

of proliferation in brain cortices. They can be transformed into 
astrocytes, oligodendrocytes and neurons. NSCs can be obtained 
from hippocampus, sub ventricular zone (SVZ) of brains of adult 
mammals and other areas of fetal brains as well [89,90]. When NSCs 
obtained from mouse and humans are implanted into brains of rats, 
they locate and relocate and transform in a pattern that is confined 
to a particular locus. In PD rats that have low DA proportion, NSCs 
favorably transform into DA neurons [91]. Transcription proteins 
such as Lmx1a and Msx1 were manifested in DA neural progenitor 
in ventral part of midbrain and these proteins induce DA neuron 
production with midbrain similarity. They caused the differentiation 
of neural progenitor cells into DA neurons in midbrain of chick 
embryos and are responsible for their selectivity and development. 
NSCs were transformed into DA neurons by five-step procedure. 
By overexpression of ASCL1 which is a transcription factor, human 
neural progenitor cells generated larger neurons which had much 
more neuritis [92]. NURR1 is a regulatory protein in DA neuron 
differentiation, growth and proliferation of DA neurons [93]. Its 
overexpression caused NSCs of mouse models to transform into DA 
neurons and persist in vivo in PD rats [94].

There are a few studies which suggested little recovery after 
grafting substantia nigra-derived fetal cells into PD models of 
rats, but most found most favorable results [95,96]. Redmond et 
al. [97] demonstrated ventral mesencephalic (VM) neurons tissue 
when grafted to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-lesioned African Green Monkeys (AFG) persisted in their 
brains and all the animals became better in behavioral aspects by 9 
months of post-transplantation in primate model of PD [97]. 

First clinical trials occurred in Sweden in 1980’s in animal 
research studies to graft fetal DA neurons to patients of PD in 
placebo-controlled trials [98]. Motor functions were measured 
quantitatively, and clinical trials were carried out to implant 
human fetal DA neurons to patients of PD. Noteworthy effects 
were observed in behavioral and histological aspects in these 
researches [99,100] Freed et al. conducted double-blind, sham 
surgery-controlled study by nominating 40 patients with average 
PD span of about 14 years and haphazardly distributing them into 
two groups each having 20 patients. The transplantation group 
received fetal neural cells bilaterally while the control group 
received sham surgery. They all were assessed one-year post-
transplantation which was done on Unified Parkinson’s Disease 
Rating Scale (UPDRS). In comparison to control group, noteworthy 
therapeutic effects were observed in patients at 60 years of age and 
younger and showed no noteworthy therapeutic effects in adults, 
with variations in therapeutic effectiveness. Olanow et al. [101] 
conducted double-blind control trial with 34 patients of severe PD 
for two years post transplantation. They were haphazardly given 
bilateral grafting of fetal DA neurons as transplantation group or 
sham surgery as control group. At postmortem examination, robust 
DA neurons persisted yet no noteworthy improvements were 
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observed in transplantation versus control group [101]. Additional 
double-blind study was conducted in which 33 patients grafted 
with fetal DA neurons were followed up for two years and out of 
these, 15 patients were followed up for 2 years or further. On UPDRS 
motor ratings, noteworthy therapeutic benefits were observed the 
uptake of [48] F-flurodopa (18F-FDOPA) by putamen was observed. 
PET showed that fetal grafts survived in patients of PD over the 
study of four years [102]. Though, dyskinesia was observed as a 
consequence of such grafts, predominantly seen in those taking 
levodopa for PD. [101] Olanow et al. identified that about 56% of 
PD patients suffered from sustained dyskinesia after the removal 
of medication they were taking for PD[101] which was quiet much 
than 15% of PD patients who developed dyskinesia Freed et al. 
[100] reported. After transplantation of such neural grafts, relapse 
of dyskinesia has been reported [103,104]. Contexts have proved 
that these grafts contain serotonin neurons that are related to such 
dyskinesia, therefore, cells with homogenous populations should 
be used for grafting [105,106]. 

A study was conducted, which showed that grafted fetal 
DA neurons persisted for about 14 year without producing any 
detrimental effects, indicating their invulnerability and usefulness 
[107]. Two studies were performed and showed that Lewy bodies 
containing alpha-synuclein disseminated to the grafted DA neurons 
14 or16-years post-transplantation [108,109] suggesting that it 
can be a continuous process.

A multicenter and collaborative study of European Union 
(TRANSEURO) was established in 2010, which formed new 
strategies for clinical trials of fetal midbrain DA therapy for patients 
of PD. These comprise of mindful selection of patients, who are of 30 
to 68 years at inclusion time period, responding well to levodopa, 
are at early stages in their disease process, site of graft implants 
should be assesses systematically, standards of clinical analysis, 
amount of patients and post-transplantation immunosuppression 
and time of follow-up. TRANSEURO performed new clinical trials 
of greater than 100 patients of PD and results are in the process of 
analysis [110,111]. 

Human Embryonic Stem Cells (HESCs)

Embryonic stem cells (ESCs) are pluripotent and self-restoring 
cells that are segregated from inner cell mass of the pre-implantation 
blastocysts [112]. They can differentiate into any sort of tissue, for 
instance DA neurons, neural stem cells (NSCs) and neurons, hESCs 
were first segregated by their inner cell mass cells culture with 
feeder cells that are obtained from mouse embryonic fibroblast 
(MSFs) [113,114]. Yan et al. established strategies to produce 
midbrain-like DA neurons from hESCs that are obtained from 
neuroepithelial cells by adding growth factor SHH and FGF8 in a 
definite pattern [114]. Initial precursors assume a region peculiarity 
which caused transformation of midbrain neuroepithelial cells. 
Locomotive defects in rat models of PD showed betterment after 

the application of hESC-derived DA neurons, as long as these 
started to function in vivo [115,116]. Chamber et al. established 
a strategy to improve the effectiveness of DA production from 
pluripotent stem cells (PSCs). They proposed that propagation and 
persistence of DA neurons from hESCs is increased by inhibiting 
SMAD signaling [116]. Noggin and SB431542, when added to 
prevent SMAD signaling, causes neural transformation of >80% 
of hESCs which was carried out in adherent culture environment 
Fasano et al. [117]  proposed that those neurons which show failure 
to develop towards anterior regionalization, can be transformed 
to midbrain DA neurons by the addition of FGF8 or Wnt1 [117]. 
They also established a floor plate-based technique to produce DA 
neurons from hESCs in a differentiation medium, which contains 
activators of sonic hedgehog (SHH) and WNT signaling in vitro. DA 
neurons thus obtained, propagated for greater than 18 weeks and 
also restored the rotation dysfunctions caused by amphetamine 
in vivo after their grafting into 6-OHDA_lesioned rats and MPTP-
lesioned rhesus monkeys [118]. Another group study, revealed 
that by the use of lentiviral vectors in hESCs for the expression of a 
gene LMX1A , that regulates DA neurons, generated A9 subtype of 
ventral midbrain DA neurons for greater than 60% of all neurons 
being produced by LMX1A-tranfected hESCs [119]. Major problems 
regarding stromal cells use as feeder cells for culture of cells derived 
from hESCs are that these have few rodent cells in them which 
have associated risks of immune rejections. To solve this issue, few 
studies established feeder-free culture system that utilize matrigels 
in place of feeder cells [92,93] Schulz et al. [120] produced DA 
neurons in serum-free suspension approach [120] Vazin et al. 
[121] substituted PA6 stromal cells with growth factors IGF2, SDF-
1, EFNB1, and PTN. These factors caused the transformation of 
hESCs into TH-positive DA neurons directly [121]. After the early 
differentiation step of hESCs into NSCs, growth factors SHH and 
FGF8 were shown to substitute for PA6 stromal cells. Serum was 
not included in their culture strategies. A significant innovation 
made by them was that cells could be reinstituted at each of the 
intermediate stages in their four-stage process (ESC proliferation 
→NSC production → DA neuron precursor induction → DA 
development) destitute of function deprivation, causing the cells to 
be grafted at a relevant point in developing neurons [122]. Clinical 
trials are not still conducted for treating patients of PD, though 
hESCs can be transformed into many DA neurons in vitro and have 
also proved to reinstitute motor disorders in animal models of PD. 
Matter of concerns are: 1) the stability in physical composition of 
DA neurons post-transplantation, and 2) concerns regarding hESCs 
that remain undifferentiated that have the potential for tumor 
development. Moreover, there are ethical concerns as well.

Induced pluripotent stem cells (iPSCs)

Preliminary studies proved that somatic cell nuclear transfer 
(SCNT) is used to reprogrammed differentiated somatic cells into 
an undifferentiated form [123-125]. However, this technique has 

https://biomedgrid.com/


American Journal of Biomedical Science & Research

Am J Biomed Sci & Res                                                                                                                                                               Copy@ Usama Khalid Choudry

284

not yet applied to generate patient specific cells [126,127]. Mouse 
iPSCs were produced first in Yamanaka lab in 2006 by the lentiviral 
expression of four transcription factors: Sox2, c-Myc, Oct3/4, and 
Klf4 in fibroblasts obtained from mouse embryos [128]. Shortly, 
Yamanaka lab and other labs, utilized human orthologs of these 
four transcription factors: Sox2, NANOG, OCT4, and LIN28, for 
the production of human iPSCs as well for those patients who 
were related to diseases like PD [128-130]. Oct3/4 and Sox2 play 
an important part in the proliferation of undifferentiated ESCs in 
culture [131]. Klf4 and c-Myc aid in somatic cells reprogramming 
. Subsequent studies proved that Oct3/4 and Sox2 seem to be the 
only genes necessary for the production of iPSCs [132] while Klf4 
and c-Myc are not of use [133]. Reprogramming of differentiated 
somatic cells of an organism to pluripotent embryonic-like form 
produces iPSCs. They possess less risks of rejection since the 
cultured cells are autologous. However, ethical concerns are still a 
problem. As soon as they are reprogrammed into iPSC form, growth 
factors are introduced into them so as to differentiate them into 
specific lineages (eg: NSCs or DA neurons) [134,135]. Effects of 
therapy with mouse iPSCs were studied by grafting them into brain 
of rats [136]. It was reported that transplanted iPSCs developed into 
DA neurons. This resulted in betterment of behavioral symptoms in 
PD models of rats. Further studies reported that, neural stem cell 
or iPSCs obtained from humans proved to be effective in PD models 
of rat and monkey [137-140]. Regarding the utilization of iPSCs 
for treating PD, no clinical trials have yet been performed. Since 
the interaction between transgenes and viral vectors in the iPSC 
genome may result in malignant mutations or may derange their 
differentiation capability, Jaenish et al. generated such iPSCs for PD 
patients which lack transgenes. This was done by an enzyme called 
“Cre recombinase”, which removes the reprogramming factors. This 
type of patient-iPSCs presented global gene expression which seem 
to be similar to hiPSCs and hESCs that bear transgenes [141]. The 
degeneration of DA neurons was fixed by the repairing the LRRK2 
G2019S mutation, which shows that this mutation is an essential 
factor in causing PD [142] Isacson et al. [97] utilized stromal 
feeder cell-based strategy and grafted DA neurons differentiated 
from non-viral PD-iPSCs into rat models which have 6-OHDA 
lesions. It was reported that these neurons persisted and showed 
functional recovery by decreasing the rotational asymmetry caused 
by apomorphine [138]. This group also reported that autologous 
iPSCs obtained from cynomolgus monkeys (CM) when autologous 
grafted into CM having MPTP lesions, proved to have long-standing 
improvements in functions and persisted for about 2 years and 
also the brain of CM was re-innervated [143]. Transplantation of 
iPSCs-NSCs recovered the motor deficits of rat models with PD 
from 4th-16th week [137]. Reprogramming efficacy became better 
by using histone deacetylase, valproic acid (VPA) and DNA methyl-
transferase inhibitors, especially increasing th efficacy by two 
orders of magnitude, about 10%, in the absence of c-Myc Stadtfeld 

et al. [144] reprogrammed liver cells of mouse into iPSCs by the 
expression of four transcription factors of adenoviruses [144] 
Okita et al. [145] generated iPSCs by putting plasmids containing 
the suitable genes repeatedly into fibroblasts of embryo [145]. 
By the use of the transposon piggyback, this strategy was utilized 
in human cells by Kaji et al. [146] which carried the chances of 
remaining sequences and chromosomal mishaps. iPSCs lacking 
transgene sequences and vector are also produced by utilizing non 
unified episomal vectors [147]. Direct protein transduction system 
which lacks DNA vector generates iPSCs that have no chances of 
integrations and mutations in chromosomes [97] Isacson et al. 
[148] proposed a proficient method for differentiation and sorting 
of DA neurons from human ES as well as human iPS cells. VMDA 
neurons augmented with NCAM (+) / CD29 (low), were sorted 
out from pluripotent stem cell-differentiated cells. These sorted 
neurons were positive for EN1/TH and FOXA2/TH and expression 
of NURR1, EN1, GIRK2, PITX3, TH, FOXA2, and LMX1A was very 
high, clearly showing that the neural cells that were sorted out are 
DA neurons. This proved that cell therapies obtained from iPSCs 
are quite secure and useful techniques for future therapies [139]. 
Certain amendments are made to decrease the mutagenicity of 
utilized lent viruses and retroviruses. For instance, c-Myc retrovirus 
when gets reactivated, may possess tumor potential [149]. Though, 
c-Myc removal may result in decreased efficacy in iPSC generation. 
Replacement of Klf4 and c-Myc with Nanog and Lin28, decreases 
the chances of tumor formation to a greater extent. This proves that 
c-Myc is responsible for propagation or increasing the rapidity of 
phases that develop pluripotency, whereas developing pluripotency 
by itself is not compulsory [121] Chen et al. [150]. established a 
suspension system for culturing, and it was habituated by O’Brien 
[151] and Laslett [152] to utilize them in hESCs and hiPSCs (revised 
by Serra et al. [153]. Long duration of culturing is maintained in 
such systems, yet preserving the usual karyotype, pluripotency, 
and expropriate expression of markers. A factor OCT4 along with 
CHIR 99021, TGF- β inhibitor, and VPA can derive iPSCs from adult 
and mouse fibroblasts [133]. Currently, a study proved that iPSCs of 
rhesus monkey naïve are obtained simply with smaller molecules, 
escaping OCT4, serving to be an important cell source to be utilized 
therapeutically as well as in researches [154].

Directly Induced Dopamine Neurons (iDA neurons)

Complex ways in the production of iPSCs, representation, 
differentiation, and description into DA neurons have made the 
researchers to sort out achievable and obtainable ways to generate 
DA neurons. Similarly, the undifferentiated cells present in iPS 
cell population can result in development of tumor and restrict 
their utilization clinically. Currently, it has been reported that by 
incorporating different sort of mixtures of the transcription factors 
Nurr1 (Nr4a2), Mash1 (Ascl1), Ngn2, Sox2, Lmx1a, and Pitx3 
and reprogramming them with fibroblast result in DA neurons 
production [155-157]. Caiazoo et al. proposed that DA neurons can 
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be reprogrammed directly from human and mouse fibroblasts by 
the action of three transcription factors, Nurr1 (Nr4a2), Lmx1a, 
and Mash1 (Ascl1). These directly reprogrammed DA neurons have 
similar activity as DA neurons [155] Kim et al. [157] proposed that 
DA neurons that are similar to midbrain DA neurons express the 
neuron marker Pitx3 and are generated by the lentiviral expression 
of eight transcription factors EN1, Nurr1, Lmx1a, Mytl1, Acsl1, 
Brn2, Lmx1b, Pitx3. To generate DA neurons from fibroblast, two 
of these transcription factors are important, and these include 
Pitx3 and Acsl1. The directly converted DA neuron thus formed 
appear to function in PD mouse models [158]. The transcription 
factors that were responsible for generating neural progenitor 
cells (NPCs) from fibroblasts were amalgamated along with culture 
medium having SHH and FGF8 in it, by Kim et al. [158] As a result, 
DA neurons releasing dopamine and expressing TH were generated 
successfully [157].

There are certain issues regarding to whether directly 
reprogrammed DA neurons are harmless and risk free for utilization 
in clinics or not. Anyhow, proceeding approaches in the studies will 
ultimately surpass these concerns and put forward these neurons 
to clinical experiments and trials for PD.

An Outlook on Future of Stem Cell Therapy For PD

Immune rejections and ethical concerns are the major issues 
regarding the use of hESCs, NSCs and DA neurons obtained from 
fetal brain. However, autologous cell therapy for PD served the 
purpose of generating iPSCs and iDA neurons. Still, there are a 
number of concerns regarding the utilization of iPSCs for clinical 
purposes which need to be sorted out, including genetic and 
epigenetic aberrations, limited production, and degree of safety of 
iPSCs-derived cells.

Limited production

Fully reprogrammed cells have less productivity. But this will 
continue to become better and it is expected that its production will 
increase in future. VPA and additional chemicals have enhanced 
the production by 0.05% [159,128] Yamanaka et al. established a 
random model, in which he proposed that almost all or many of the 
differentiated cells possess the ability to be transformed into iPSCs. 
Nevertheless, they are generated from fibroblast cells, yet they 
are also generated from a wide range of cells of the three types of 
cell lines, which include endodermal, mesodermal and ectodermal 
cells. Stadtfeld et al [101,144] utilized cells of liver; Aoi et al. [160] 
utilized cells from liver and stomach; Aasen et al. [161] utilized cells 
obtained from adult human hairs. This shows cells can be obtained 
from any part of adult human and have different productivities 
through experiments. Aasen et al. [161] proposed that iPSCs 
generated from keratinocytes, obtained from adult human hairs, 
were not indistinct from ESCs and were 100 times more efficacious 
in comparision to reprogramming of human fibroblasts [161]. 

Future should focus on the aims to increase the production of iPSCs 
and also to focus more on identifying the efficacious methods of 
generation of iPSCs.

Genetic and Epigenetic Abberations

Epigenetic memory in iPSCs and iDA neurons on cell fates 
are noteworthy issues. They are linked to their originators or 
else sustaining marks of reprogramming after differentiation 
[162,163]. Reprogramming techniques done by using reteroviruses 
or lentiviruses should be substitutes by vectors which are non-
integrating, in order to associate with smaller molecules or else 
for the expression of reprogramming genes, for the production 
of iPS cells that are clinically useful [164]. There are a few PD 
patients-derived iPSCs which has a number of gene mutations 
in it, chromosomal structure mutations, point mutations, gene 
duplications, and SNCA genes deletion, Parkin, LRRK2, GBA or more 
[142,165-169]. It was proposed that iPSCs having SNCA mutation 
(A53T) can be corrected by zinc-finger nuclease (ZFN)-mediated 
nuclease method and genetic repair of the A53T mutation in iPSCs 
from PD patients did not influence the property to transform into 
DA neurons. Properly rectified iPSC lines from PD patients were 
confirmed by sequencing analysis and PCR genotyping. LRRK2 
G2019S mutation were repaired and this resulted in phenotypic 
release in transformed cells [142].

Degree of Harmlessness and Stem Cell Purity

In order to generate DA neurons or NSCs from iPSCs for 
the management of PD, it is important that the population of 
untransformed or undifferentiated cells are lower than 1% in order 
to be protected against tumor development post-transplantation. 
FACS and other non-invasive magnetic selection are the sorting 
out techniques generated for the cells obtained from iPSCs. 
Furthermore, culture medium of cells should be without feeder 
cells to escape animal contagion. Presently, feeder cells obtained 
from murine sources are utilized to retain hiPSCs and hESCs. 
Additionally, culture environment which has fetal bovine serum 
(FBS) in it, is generally utilized for culturing the feeder cells. It will 
result in allogenic cell contagion of cells generated from iPSC. A 
current study generated a system free of feeder cells for culturing 
the iPSCs and hESCs in the StemFit™ medium, making a huge 
initiative for the production of GMP-standard cells feasible for 
clinical use [170].

Is stem cell therapy a better control of symptoms or a 
cure?

There are many articles and researches enlightening the 
advantages of stem cell therapy and promises a better cure of 
PD. The aim of stem cell therapy is not only to restore the lost 
dopaminergic neurons but also to halt the disease progression. The 
best achievement that can ever be achieved is the repair of striatal 
dopaminergic innervation to the normal range. Fetal mid brain 
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allograft has shown some improvement in patients lifestyle and 
functional activity but still, it is not providing a cure [171]. Even 
if the dopamine neurotransmitters are restored, it will again be 
a question whether it will be effective in every advanced PD. We 
have given a proposed model regarding our findings in Figure 1 as 
a summary.

Conclusion
The occurrence of PD is increasing day by day, because of the 

growing population of elderly. Its commercial and psychological 
influences on the wellbeing of population as well as on those close 
relatives and friends of the patients afflicted with PD seem to be 
profound. Several treatments are available but none of them have 
proved to be beneficial in decreasing the loss of DA neurons or 
in reestablishing the normal levels of DA in striatum. There are 
however a number of drugs for treating PD, but these are either 
costly or have dangerous adverse effects. Currently, researches 
have proposed propitious methods in place of drug therapies, 
including stem cell grafting and gene therapy for PD and other 

neurodegenerative therapies. Studies are performed on the use of 
all cell sources derived – fetal NSCs, ESCs, iPSCs and iDA neurons 
in different animal and human models. NSCs transformed into 
DA neurons in PD rat models as well as in placebo-controlled 
trials, double-blind studies and clinical trials have proved to 
produce noteworthy therapeutic effects. However, graft induced 
dyskinesia were observed which were probably due the presence 
of serotonin neurons among NSC population can be prevented by 
using homogenous population of cells. Regarding hESCs, Clinical 
trials have not been performed yet for the treatment of PD, though 
in vitro studies have shown that they transformed into DA neurons 
and improved motor deficits in animal models. Matter of concerns 
however, are: 

i.	 the stability in physical composition of DA neurons post-
transplantation, and 

ii.	 concerns regarding hESCs that remain undifferentiated 
that have the potential for tumor development. 

Figure 1: A proposed model of various techniques applied to enhance dopaminergic outflow
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Moreover, there are ethical concerns as well. Researchers are 
on the way to great success in the generation iPSC derived cells 
for treating PD. Though, no clinical trials have yet been performed 
for PD, but they have proved therapeutically effective in animal 
models. There are, however, restrictions and drawbacks associated 
with iPSCs. Ethical concerns are also a problem. To understand 
their entity and survival rates for treating PD, pre-clinical studies 
might also be needed. Unless further studied and the degree of 
their efficiency and harmlessness is established, iPSCs should not 
be brought to clinical trials. Undifferentiated cells in iPSCs have 
risks of tumor production, therefore, researchers are working 
in carrying out direct production of DA neurons. Successful 
approaches are made which show that directly induced DA neurons 
(iDA) can be obtained from mouse and human fibroblasts by adding 
transcription factors into them. Among the transcription factors, 
two of them play an important role and these include Pitx3 and 
Ascl1.Currently, researchers are working on most of these recent 
stem cell therapies, with majority being performed only on animal 
models, thus, degree of harmlessness and efficiency must be 
satisfactorily determined and ethical issues must also be resolved. 
Nevertheless, recent therapies and their advancements described 
in this review provide us with hopes that efficient treatments for 
PD will soon be established (Figure 1).
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