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Abstract

The pathologic hallmark behind Parkinson’s disease (PD) is the loss of dopaminergic neurons from the substantia nigra pars compacta (SNpc)
and accumulation of lewy bodies (mis-folded proteins). Clinically, in PD the patient encounter with both motor and non-motor symptoms, motor
symptoms caused by loss of dopaminergic neurons from the substantia nigra, presented with tremor, bradykinesia and muscle rigidity along with
impaired gait, and posture. Recent researches have enlightened the role of different type of stem cell and their clinical application. Stem cell therapy
has shown promising effects on the lifestyle and behavioral changes in patients with Parkinson’s disease. In this review article we will be discussing
about the recent advancements in stem cell therapy for Parkinson’s disease.
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Introduction

Parkinson’s disease (PD) is known to be second most common
neurodegenerative disorder after Alzheimer’s disease [1] which is
becoming a challenge to deal with.

Epidemiological study has revealed that 5 million people after
age of 50 years worldwide are affected with PD and it will increase
in next 20 years [2]. PD is most common in men (1.5 times) than

women [3]. Its incidence is higher in developed countries [4] due

to increased age group. Therefore, age is an important risk factor
for PD.

Genetic mutations include those in alpha-synuclein (SNCA),
Parkin, PINK, DJ-1 (PARK®6), Leucine-rich repeat kinase2 (LRRK2),
PARK9, GBA (glucocerebrosidase), DNAJC6, SY NJ1, ATXN2, ATXN3,
GCH1, DCTN1 etc. [5]. Among these genes SNCA, Parkin, D]-1, PINK-
1 are most common gene mutations resulting in PD [6]. People with

close relatives with PD do increase their risk of getting PD but still
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the risk is 2-5% until family has a known mutated gene of PD [7].
Other risk factor is the exposure of the environmental toxins [4,8]
such as pesticides, exposure to heavy metals, smoking, interstitial
toxins which have shown a marked decrease in dopaminergic
neuronal cells [9,10]. According to the scientists, PD is not a fatal
disease but by time it worsens the normal functions [11].

Treatment of PD with the transplantation of gene is considered
to be one of the promising approaches towards the treatment of PD
[12]. Over last two years investigators relocated the dopaminergic
(DA) cells like adrenal medullary dopaminergic cells, into the
striata of PD animal models [13,14]. In recent time, researchers
manipulated growth factors (FGF-2b, FGF8, SHH) and produced DA
neurons from rodent embryonic stem cell and transplanting them
into striata of PD animal model. Surprisingly, these transplanted
neurons persisted and integrated into normal brain function in
PD of animal model [15,16]. Researchers can produce yet more DA
neurons to transplant into brain of PD animals by overexpression of
Nurr 1 in embryonic stem cell [17-20].

Most common tools for reproducing the brain cells include
embryonic stem cell (ESCs), mesenchymal stem cell (MSCs), neural
stem cell (NSCs) and induced pluripotent stem cell (iPSCs). Several
mechanisms like cell replacement, mediating re-myelination,
trophic factor and modulation of inflammation can be useful in
Stem cell therapies [5].

From years, researches are going on for the treatment and
management of PD because it is very common disease in old
population in the developed countries. In the past decades, PD was
been treated with drugs which has some very severe adverse effects
such as wearing off phenomena, motor fluctuation, and abnormal
movements as dyskinesia. Beside the drug therapy, surgical
treatment is not the option preferred at early stage of disease and it
even results in some serious after effects.

The purpose of writing this review article was to highlight
the recent approach towards the advancement in the treatment
of Parkinson disease with stem cell therapy. We aim to treat PD
in future with less symptoms and side effects and to minimize the
incidence of PD in future population. Hoping these stem cell therapy
will help to reduce the global burden of PD.

Though these new treatments of PD will help in reducing the
weightage of PD but much work and new tools are still required for
the management and decreasing the graph of PD.

The idea of cell replacement therapy was emerged in 1979, and
it was decided to use intra-cerebral grafts of fetal mesencephalic
tissue (rich in dopaminergic neuroblasts) in rats [21,22], but
clinically it was not implemented because it was not ethically
approved to use the tissue from the aborted fetuses and on the
other hand even difficult to collect human fetal tissue containing

dopaminergic neurons, so it was not performed.
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A study done on four patients with PD, by Oslon, Seiger and
Backlund [23,24] using autologous graft of adrenal medulla cells
into striatum to provide a catecholamine source to the cells, but no

good results were produced, so the method was dropped out.

Further in 1987, first intra-striatal implantation of human
fetal mesencephalic tissue (taken from 6-9-week old fetus) was
performed on patient with PD [25], the aim was to see whether the
denerveted striatum could again be reinnervated and transplanted
cell could survive, this studies continued until late 1990s.
Howeverthis clinical studies was terminated after patients develop
dyskinesia [26] and lack of efficacy. Another study was done on
patients in Lund, Sweden in the late 1980s to mid-1990s who
receive of fetal cell transplantation [27,28] after 15 and 18 years
of post-transplantation follow-up the patients motor activity was
improved but the non-motor activity didn’t show any improvement
and graft induced dyskinesia’s (GIDs) remains the problem of all
the patients [29-31]. The postmortem studies of these patients
reveal that the presence of Lewy bodies of about range of 2-8% and
about 80% of increased levels of alpha synuclein in cell bodies, with
premature aging of cell. Furthermore, it suggests that with the time
the grafted neuron reduces the dopamine transporter which has
its effects on the grafted cells [32-34]. In early 2000s TRANSEURO
European Union-funded multicenter started to figure out the stem
cell related GIDs and other disorders. They set a protocol to choose
patients for transplant, emphasized on young age group with early
stage disease.

According to a Commentary published on 2017, Zuo and his
colleagues transplanted the human stem cells (hNSCs) on an
animal model but instead of focusing on the recovery of nigro-
striatal dopaminergic pathway they assess the sub ventricular zone
(SVZ), which is a major neurogenic niche(stem cell-enriched brain
region).This study leads to underexplored putative regenerative
pathway in PD. After testing and imaging, better performance was
seen in motor and cognitive task compared to lesion control animal,
hence prove the key role of SVZ in recovery. In a nutshell this study
suggest that the transplanted stem cell did not directly stimulated
the functional activity in PD animals but it promote the activity of
neurogenic SVZ through the resident stem cells within the niche, to
recruit a complex brain regenerative machinery [35].

Molecular and Genetic Processes in Parkinson's
Disease

Hallmark pathology of Parkinson’s disease is loss of dopamine
neurons in the substantia nigra pars compacta (SNpc) and
diminution of dopamine levels in the striatum [36]. Experiments
show that PD has impacts on prefrontal cortex (PFC), anterior
cingulate gyrus and/or fronto-striatal pathways as well [37].

Though the exact mechanism of loss of DA neurons in SNpc is
not well known. However, the commencement and development

of PD may be related to protein misfolding and accumulation,
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over-excitation , oxidative trauma, failure to generate energy,
mitochondrial destruction, impairment of pathways of protein
clearing, cell-autonomous mechanisms and “prion-like protein
infection” [38-40]. The foremost hypothesis for PD amongst
them is protein misfolding and its subsequent accumulation in
intracellular spaces [41,42]. Lewy bodies (LB) is the chief misfolded
amyloid protein in intracellular spaces of SNpc neurons in PD
[38,42,43] containing various misfolded amyloid proteins , which
includes alpha-synuclein (SNCA), phosphorylated tau (p-tau), and
amyloid beta protein (AB) [42,44]. Sporadic PD (SPD) has various
environmental toxins linked to it, and it can be simulated to some
extent in experimental PD models of animals, for instance the use
of paraquat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) [45,46]. In contrast to SPD, familial cases are infrequent,
and do not exhibit the symptoms of PD like tremor, bradykinesia
and muscle rigidity along with impaired gait, and posture as well
as frontostriatal-mediated executive dysfunction, including deficits
in attention, speed of mental processing, verbal disturbances,
impairment of working memory and impulsivity. This makes it

harder in understanding the pathogenesis of PD [41,47].

Limited symptomatic treatments for PD currently existing,
are applicable only to a limited amount of patients. Furthermore,
permeability issues, short-life span and adverse effects are the chief
concerns for the use of these drugs in treating PD. Recent advances
in stem cell transplantation [48-50] and gene therapies [51,52]
serve as a substitute of drugs in the treatment of PD. For instance,
application of genetically engineered DA neurons are proved to be
beneficial in PD mouse models [50,53]. Also, improper functioning
of metabolic pathways in PD are corrected by scientists by the use
of recombinant adeno associated viral vectors (rAAV) or lentiviral
[54]. Likewise, current generation of gene editing technique, known
as, clustered regularly interspaced short palindromic repeats
associated protein 9 (CRISPR-Cas9), have shown to be worthwhile
in the treatment of PD [52].

Accumulation of Misfolded Proteins

Accumulation of alpha-synuclein (SNCA)

Intracellular accumulation of Lewy bodies in DA neurons of
SNpc [55] containing alpha synuclein (SNCA) and other associated
proteins is the hallmark pathology in PD [44]. On examining
the brains of numerous PD patients, Gomperts and colleagues
established a mash of amyloid deposits in their brain, and it was
related to cognitive regression without dementia, which proposed
that amyloid adds to cognitive, but not motor regression with time
[56]. In the same way, Hepp and colleagues proposed that the
degree and the level of extension of A3 pathology adds to congnitive
dys-functioning in PD with dementia (PDD) and dementia with
Lewy bodies (LBD) [57]. The oligomers, proto-fibrils, and fibrils of
SNCA or other misfolded amyloid proteins produce a pore in the

membrane and triggering the death of neurons by over-excitation,
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energy failure, oxidative stress and neuroinflammation [44,58].
Likewise, SNCA gene mutations (for e.g. E46K, H50Q, A53T and
A30P) are responsible for early beginning, quick progression and
greater association of dementia in familial PD [59]. SNCA when
overly expressed in animal and cell culture models indicated
aggregation of SNCA in mitochondria [60]. Overexpression of
SNCA in mice indicated mitochondrial lipid abnormalities and dys-
functioning of electron transport chain [61], and the sensitivity of
mice to mitochondrial toxins became less [62]. Studies of human DA
neurons in PD brain also showed the presence of respiratory chain
dysfunction, oxidative stress and DNA damage in mitochondria
[63].

Tau hyper-phosphorylation (p-tau)

Tau hyper-phosphorylation produce neurofibrillary tangles
(NFT), that are paired helical fragments of tau, a characteristic
feature of fronto-temporal dementia with parkinsonism (FTDP)
[64]. This neurodegenerative disease is related to chromosome
17, with buildup of p-tau in SNpc and cortex [64]. Co-localization
of p-tau with LB, often occurs in sporadic PD [65]. Also, mutation
in the gene encoding microtubule associated protein (MAPT)
produces rise in the levels of p-tau accumulation [65]. The p-tau
is also related to mutations in LRRK2 gene [47]. Co-localization
of NFTs with SNCA in LB cause disruption in the structure of DA
neurons, and this causes quick detoriation and death of DA neurons
[64,66,67].

Genetic Mutations in Parkinson’s Disease

Parkin is a protein that plays an important role in ubiquitin-
proteasome system, which aids in destruction of misfolded
proteins. Its mutation results in accumulation of misfolded proteins
in SNpc [68]. Mutations of parkin in idiopathic PD patients and
in mice that have low levels of parkin, exhibit loss of neurons in
locus coeruleus of the midbrain [68]. Parkin also control DA levels
that are released by SNpc [36]. DJ-1 (PARK7) is a dimer which is
present in the cytoplasm, nucleus, and mitochondria, and PD in
early onset is related to this dimer [69]. Its mutation and deletions
result in autosomal recessive PD [45]. It also co-localizes with
p-tau, SNCA and produces the pathologies of synuclein and p-tau
[57]. PINK1 (PARK6) produces a protein called PTEN-induced
putative kinase-1, which is located in mitochondria and defend the
neurons against stresses that cause mitochondria | injury [70]. Its
mutations are seen in PD, where it makes the cells susceptible to
damage [70,71]. Its mutations are also related to impairment of
mitochondrial functions as well as destruction of SNpc neurons,
that results in PD [70].

Excessive Glutamate Production

Deficiency of DA neurons cause the sub thalamic nuclei (STN) to
become over excited, that results in enhanced glutamate production
[72]. This then binds to NMDA or AMPA receptors and opens
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calcium channels. Increased levels of calcium cause mitochondrial

injury and generate ROS, which cause oxidative injury [73,74].

Alterations Involving Protein Degradation Pathways

Ubiquitin-proteasome system (UPS): Its dysfunction causes
accumulation of amyloid proteins, for instance LB, and intense
neurodegeneration in SNpc [75,76]. Molecular chaperones known
as heat shock proteins (HSP). HSP70 has an ATPase domain, whose
mutation increases the toxicity of SNCA [77]. Likewise, its excess
expression in rat brain portions, decreases the toxicity of rotenone
or MPTP induced neurotoxicity [78].

Mitochondrial Injury and Oxygen Trauma

ATP production in the cells is affected due to impaired activity
of complex-I in mitochondria, which results in cellular death [79].
Brain monoamines, including DA and 5-HT serve as antioxidants
[80]. DA degradation by monoamine oxidase type B (MAO-B), along
with the available ground state oxygen, results in ROS production
[81]. In PD, there is a rise in oxidative stress markers along with
related changes (e.g damage to DNA, proteins and fats by free
radicals) [81].

Prion Hypothesis

In this hypothesis, it is proposed that SNCA, analogous with
prion proteins, extends throughout the CNS, and contaminate
nearby novel and fit neurons, and it goes on until most of the
damage has occurred. Thus, this type of infection may be the cause
of development and neuronal degeneration in certain sorts of PD
[42].

PD leads to

disintegration to patient’s relatives, friends and family. Unluckily,

temperamental, social and economical
efficacious remedies are not presently achievable, despite of that,
rapid detection and suitable mitigative therapies can offer a much

effective and prolonged life span for the patients of PD.

Sources of Stem Cells

Bone-marrow derived mesenchymal stem cells (BM-MSC) and
olfactory ensheathing cells (OEC) have been used for the treatment
of PD, but these have less potential in differentiating to DA neurons
[82-84]. Presently, researchers are working on carrying out studies
on different cell lines which include neural stem cells (NSCs)
and human fetal dopamine (DA) neurons, embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSCs) and directly induced
dopamine neurons (iDA neuron) generated from autologous
somatic cells [85-87].

Recent Advancements in Different Stem Cell
Sources

Neural stem cells (NSCs) and human fetal DA neurons

In 1965, Neural stem cells (NSCs) were documented at first
[88] and were characterized as granule cells having greater degree
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of proliferation in brain cortices. They can be transformed into
astrocytes, oligodendrocytes and neurons. NSCs can be obtained
from hippocampus, sub ventricular zone (SVZ) of brains of adult
mammals and other areas of fetal brains as well [89,90]. When NSCs
obtained from mouse and humans are implanted into brains of rats,
they locate and relocate and transform in a pattern that is confined
to a particular locus. In PD rats that have low DA proportion, NSCs
favorably transform into DA neurons [91]. Transcription proteins
such as Lmx1a and Msx1 were manifested in DA neural progenitor
in ventral part of midbrain and these proteins induce DA neuron
production with midbrain similarity. They caused the differentiation
of neural progenitor cells into DA neurons in midbrain of chick
embryos and are responsible for their selectivity and development.
NSCs were transformed into DA neurons by five-step procedure.
By overexpression of ASCL1 which is a transcription factor, human
neural progenitor cells generated larger neurons which had much
more neuritis [92]. NURR1 is a regulatory protein in DA neuron
differentiation, growth and proliferation of DA neurons [93]. Its
overexpression caused NSCs of mouse models to transform into DA

neurons and persist in vivo in PD rats [94].

There are a few studies which suggested little recovery after
grafting substantia nigra-derived fetal cells into PD models of
rats, but most found most favorable results [95,96]. Redmond et
al. [97] demonstrated ventral mesencephalic (VM) neurons tissue
when grafted to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-lesioned African Green Monkeys (AFG) persisted in their
brains and all the animals became better in behavioral aspects by 9

months of post-transplantation in primate model of PD [97].

First clinical trials occurred in Sweden in 1980’s in animal
research studies to graft fetal DA neurons to patients of PD in
placebo-controlled trials [98]. Motor functions were measured
quantitatively, and clinical trials were carried out to implant
human fetal DA neurons to patients of PD. Noteworthy effects
were observed in behavioral and histological aspects in these
researches [99,100] Freed et al. conducted double-blind, sham
surgery-controlled study by nominating 40 patients with average
PD span of about 14 years and haphazardly distributing them into
two groups each having 20 patients. The transplantation group
received fetal neural cells bilaterally while the control group
received sham surgery. They all were assessed one-year post-
transplantation which was done on Unified Parkinson’s Disease
Rating Scale (UPDRS). In comparison to control group, noteworthy
therapeutic effects were observed in patients at 60 years of age and
younger and showed no noteworthy therapeutic effects in adults,
with variations in therapeutic effectiveness. Olanow et al. [101]
conducted double-blind control trial with 34 patients of severe PD
for two years post transplantation. They were haphazardly given
bilateral grafting of fetal DA neurons as transplantation group or
sham surgery as control group. At postmortem examination, robust
DA neurons persisted yet no noteworthy improvements were

American Journal of Biomedical Science & Research

Do
(o)
Do


https://biomedgrid.com/

Am ] Biomed Sci & Res

observed in transplantation versus control group [101]. Additional
double-blind study was conducted in which 33 patients grafted
with fetal DA neurons were followed up for two years and out of
these, 15 patients were followed up for 2 years or further. On UPDRS
motor ratings, noteworthy therapeutic benefits were observed the
uptake of [48] F-flurodopa (18F-FDOPA) by putamen was observed.
PET showed that fetal grafts survived in patients of PD over the
study of four years [102]. Though, dyskinesia was observed as a
consequence of such grafts, predominantly seen in those taking
levodopa for PD. [101] Olanow et al. identified that about 56% of
PD patients suffered from sustained dyskinesia after the removal
of medication they were taking for PD[101] which was quiet much
than 15% of PD patients who developed dyskinesia Freed et al.
[100] reported. After transplantation of such neural grafts, relapse
of dyskinesia has been reported [103,104]. Contexts have proved
that these grafts contain serotonin neurons that are related to such
dyskinesia, therefore, cells with homogenous populations should
be used for grafting [105,106].

A study was conducted, which showed that grafted fetal
DA neurons persisted for about 14 year without producing any
detrimental effects, indicating their invulnerability and usefulness
[107]. Two studies were performed and showed that Lewy bodies
containing alpha-synuclein disseminated to the grafted DA neurons
14 orlé6-years post-transplantation [108,109] suggesting that it
can be a continuous process.

A multicenter and collaborative study of European Union
(TRANSEURO) was established in 2010, which formed new
strategies for clinical trials of fetal midbrain DA therapy for patients
of PD. These comprise of mindful selection of patients, who are of 30
to 68 years at inclusion time period, responding well to levodopa,
are at early stages in their disease process, site of graft implants
should be assesses systematically, standards of clinical analysis,
amount of patients and post-transplantation immunosuppression
and time of follow-up. TRANSEURO performed new clinical trials
of greater than 100 patients of PD and results are in the process of
analysis [110,111].

Human Embryonic Stem Cells (HESCs)

Embryonic stem cells (ESCs) are pluripotent and self-restoring
cellsthatare segregated frominner cell mass of the pre-implantation
blastocysts [112]. They can differentiate into any sort of tissue, for
instance DA neurons, neural stem cells (NSCs) and neurons, hESCs
were first segregated by their inner cell mass cells culture with
feeder cells that are obtained from mouse embryonic fibroblast
(MSFs) [113,114]. Yan et al. established strategies to produce
midbrain-like DA neurons from hESCs that are obtained from
neuroepithelial cells by adding growth factor SHH and FGF8 in a
definite pattern [114]. Initial precursors assume a region peculiarity
which caused transformation of midbrain neuroepithelial cells.
Locomotive defects in rat models of PD showed betterment after
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the application of hESC-derived DA neurons, as long as these
started to function in vivo [115,116]. Chamber et al. established
a strategy to improve the effectiveness of DA production from
pluripotent stem cells (PSCs). They proposed that propagation and
persistence of DA neurons from hESCs is increased by inhibiting
SMAD signaling [116]. Noggin and SB431542, when added to
prevent SMAD signaling, causes neural transformation of >80%
of hESCs which was carried out in adherent culture environment
Fasano etal.[117] proposed that those neurons which show failure
to develop towards anterior regionalization, can be transformed
to midbrain DA neurons by the addition of FGF8 or Wnt1 [117].
They also established a floor plate-based technique to produce DA
neurons from hESCs in a differentiation medium, which contains
activators of sonic hedgehog (SHH) and WNT signaling in vitro. DA
neurons thus obtained, propagated for greater than 18 weeks and
also restored the rotation dysfunctions caused by amphetamine
in vivo after their grafting into 6-OHDA_lesioned rats and MPTP-
lesioned rhesus monkeys [118]. Another group study, revealed
that by the use of lentiviral vectors in hESCs for the expression of a
gene LMX1A , that regulates DA neurons, generated A9 subtype of
ventral midbrain DA neurons for greater than 60% of all neurons
being produced by LMX1A-tranfected hESCs [119]. Major problems
regarding stromal cells use as feeder cells for culture of cells derived
from hESCs are that these have few rodent cells in them which
have associated risks of immune rejections. To solve this issue, few
studies established feeder-free culture system that utilize matrigels
in place of feeder cells [92,93] Schulz et al. [120] produced DA
neurons in serum-free suspension approach [120] Vazin et al.
[121] substituted PA6 stromal cells with growth factors IGF2, SDF-
1, EFNB1, and PTN. These factors caused the transformation of
hESCs into TH-positive DA neurons directly [121]. After the early
differentiation step of hESCs into NSCs, growth factors SHH and
FGF8 were shown to substitute for PA6 stromal cells. Serum was
not included in their culture strategies. A significant innovation
made by them was that cells could be reinstituted at each of the
intermediate stages in their four-stage process (ESC proliferation
—NSC production — DA neuron precursor induction — DA
development) destitute of function deprivation, causing the cells to
be grafted at a relevant point in developing neurons [122]. Clinical
trials are not still conducted for treating patients of PD, though
hESCs can be transformed into many DA neurons in vitro and have
also proved to reinstitute motor disorders in animal models of PD.
Matter of concerns are: 1) the stability in physical composition of
DA neurons post-transplantation, and 2) concerns regarding hESCs
that remain undifferentiated that have the potential for tumor
development. Moreover, there are ethical concerns as well.

Induced pluripotent stem cells (iPSCs)

Preliminary studies proved that somatic cell nuclear transfer
(SCNT) is used to reprogrammed differentiated somatic cells into
an undifferentiated form [123-125]. However, this technique has
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not yet applied to generate patient specific cells [126,127]. Mouse
iPSCs were produced first in Yamanaka lab in 2006 by the lentiviral
expression of four transcription factors: Sox2, c-Myc, Oct3/4, and
KIf4 in fibroblasts obtained from mouse embryos [128]. Shortly,
Yamanaka lab and other labs, utilized human orthologs of these
four transcription factors: Sox2, NANOG, OCT4, and LIN28, for
the production of human iPSCs as well for those patients who
were related to diseases like PD [128-130]. Oct3/4 and Sox2 play
an important part in the proliferation of undifferentiated ESCs in
culture [131]. KIf4 and c-Myc aid in somatic cells reprogramming
. Subsequent studies proved that Oct3/4 and Sox2 seem to be the
only genes necessary for the production of iPSCs [132] while Klf4
and c-Myc are not of use [133]. Reprogramming of differentiated
somatic cells of an organism to pluripotent embryonic-like form
produces iPSCs. They possess less risks of rejection since the
cultured cells are autologous. However, ethical concerns are still a
problem. As soon as they are reprogrammed into iPSC form, growth
factors are introduced into them so as to differentiate them into
specific lineages (eg: NSCs or DA neurons) [134,135]. Effects of
therapy with mouse iPSCs were studied by grafting them into brain
of rats [136]. It was reported that transplanted iPSCs developed into
DA neurons. This resulted in betterment of behavioral symptoms in
PD models of rats. Further studies reported that, neural stem cell
or iPSCs obtained from humans proved to be effective in PD models
of rat and monkey [137-140]. Regarding the utilization of iPSCs
for treating PD, no clinical trials have yet been performed. Since
the interaction between transgenes and viral vectors in the iPSC
genome may result in malignant mutations or may derange their
differentiation capability, Jaenish et al. generated such iPSCs for PD
patients which lack transgenes. This was done by an enzyme called
“Cre recombinase”, which removes the reprogramming factors. This
type of patient-iPSCs presented global gene expression which seem
to be similar to hiPSCs and hESCs that bear transgenes [141]. The
degeneration of DA neurons was fixed by the repairing the LRRK2
G2019S mutation, which shows that this mutation is an essential
factor in causing PD [142] Isacson et al. [97] utilized stromal
feeder cell-based strategy and grafted DA neurons differentiated
from non-viral PD-iPSCs into rat models which have 6-OHDA
lesions. It was reported that these neurons persisted and showed
functional recovery by decreasing the rotational asymmetry caused
by apomorphine [138]. This group also reported that autologous
iPSCs obtained from cynomolgus monkeys (CM) when autologous
grafted into CM having MPTP lesions, proved to have long-standing
improvements in functions and persisted for about 2 years and
also the brain of CM was re-innervated [143]. Transplantation of
iPSCs-NSCs recovered the motor deficits of rat models with PD
from 4th-16th week [137]. Reprogramming efficacy became better
by using histone deacetylase, valproic acid (VPA) and DNA methyl-
transferase inhibitors, especially increasing th efficacy by two
orders of magnitude, about 10%, in the absence of c-Myc Stadtfeld
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et al. [144] reprogrammed liver cells of mouse into iPSCs by the
expression of four transcription factors of adenoviruses [144]
Okita et al. [145] generated iPSCs by putting plasmids containing
the suitable genes repeatedly into fibroblasts of embryo [145].
By the use of the transposon piggyback, this strategy was utilized
in human cells by Kaji et al. [146] which carried the chances of
remaining sequences and chromosomal mishaps. iPSCs lacking
transgene sequences and vector are also produced by utilizing non
unified episomal vectors [147]. Direct protein transduction system
which lacks DNA vector generates iPSCs that have no chances of
integrations and mutations in chromosomes [97] Isacson et al.
[148] proposed a proficient method for differentiation and sorting
of DA neurons from human ES as well as human iPS cells. VMDA
neurons augmented with NCAM (+) / CD29 (low), were sorted
out from pluripotent stem cell-differentiated cells. These sorted
neurons were positive for EN1/TH and FOXA2/TH and expression
of NURR1, EN1, GIRK2, PITX3, TH, FOXA2, and LMX1A was very
high, clearly showing that the neural cells that were sorted out are
DA neurons. This proved that cell therapies obtained from iPSCs
are quite secure and useful techniques for future therapies [139].
Certain amendments are made to decrease the mutagenicity of
utilized lent viruses and retroviruses. For instance, c-Myc retrovirus
when gets reactivated, may possess tumor potential [149]. Though,
c-Myc removal may result in decreased efficacy in iPSC generation.
Replacement of KIf4 and c-Myc with Nanog and Lin28, decreases
the chances of tumor formation to a greater extent. This proves that
c-Myc is responsible for propagation or increasing the rapidity of
phases that develop pluripotency, whereas developing pluripotency
by itself is not compulsory [121] Chen et al. [150]. established a
suspension system for culturing, and it was habituated by O’Brien
[151] and Laslett [152] to utilize them in hESCs and hiPSCs (revised
by Serra et al. [153]. Long duration of culturing is maintained in
such systems, yet preserving the usual karyotype, pluripotency,
and expropriate expression of markers. A factor OCT4 along with
CHIR 99021, TGF-  inhibitor, and VPA can derive iPSCs from adult
and mouse fibroblasts [133]. Currently, a study proved that iPSCs of
rhesus monkey naive are obtained simply with smaller molecules,
escaping OCT4, serving to be an important cell source to be utilized
therapeutically as well as in researches [154].

Directly Induced Dopamine Neurons (iDA neurons)

Complex ways in the production of iPSCs, representation,
differentiation, and description into DA neurons have made the
researchers to sort out achievable and obtainable ways to generate
DA neurons. Similarly, the undifferentiated cells present in iPS
cell population can result in development of tumor and restrict
their utilization clinically. Currently, it has been reported that by
incorporating different sort of mixtures of the transcription factors
Nurrl (Nr4a2), Mashl (Ascll), Ngn2, Sox2, Lmxla, and Pitx3
and reprogramming them with fibroblast result in DA neurons
production [155-157]. Caiazoo et al. proposed that DA neurons can
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be reprogrammed directly from human and mouse fibroblasts by
the action of three transcription factors, Nurrl (Nr4a2), Lmx1a,
and Mash1 (Ascl1). These directly reprogrammed DA neurons have
similar activity as DA neurons [155] Kim et al. [157] proposed that
DA neurons that are similar to midbrain DA neurons express the
neuron marker Pitx3 and are generated by the lentiviral expression
of eight transcription factors EN1, Nurrl, Lmx1a, Mytll, Acsli,
Brn2, Lmx1b, Pitx3. To generate DA neurons from fibroblast, two
of these transcription factors are important, and these include
Pitx3 and Acsl1. The directly converted DA neuron thus formed
appear to function in PD mouse models [158]. The transcription
factors that were responsible for generating neural progenitor
cells (NPCs) from fibroblasts were amalgamated along with culture
medium having SHH and FGF8 in it, by Kim et al. [158] As a result,
DA neurons releasing dopamine and expressing TH were generated
successfully [157].

There are certain issues regarding to whether directly
reprogrammed DA neurons are harmless and risk free for utilization
in clinics or not. Anyhow, proceeding approaches in the studies will
ultimately surpass these concerns and put forward these neurons
to clinical experiments and trials for PD.

An Outlook on Future of Stem Cell Therapy For PD

Immune rejections and ethical concerns are the major issues
regarding the use of hESCs, NSCs and DA neurons obtained from
fetal brain. However, autologous cell therapy for PD served the
purpose of generating iPSCs and iDA neurons. Still, there are a
number of concerns regarding the utilization of iPSCs for clinical
purposes which need to be sorted out, including genetic and
epigenetic aberrations, limited production, and degree of safety of
iPSCs-derived cells.

Limited production

Fully reprogrammed cells have less productivity. But this will
continue to become better and it is expected that its production will
increase in future. VPA and additional chemicals have enhanced
the production by 0.05% [159,128] Yamanaka et al. established a
random model, in which he proposed that almost all or many of the
differentiated cells possess the ability to be transformed into iPSCs.
Nevertheless, they are generated from fibroblast cells, yet they
are also generated from a wide range of cells of the three types of
cell lines, which include endodermal, mesodermal and ectodermal
cells. Stadtfeld et al [101,144] utilized cells of liver; Aoi et al. [160]
utilized cells from liver and stomach; Aasen et al. [161] utilized cells
obtained from adult human hairs. This shows cells can be obtained
from any part of adult human and have different productivities
through experiments. Aasen et al. [161] proposed that iPSCs
generated from keratinocytes, obtained from adult human hairs,
were not indistinct from ESCs and were 100 times more efficacious

in comparision to reprogramming of human fibroblasts [161].
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Future should focus on the aims to increase the production of iPSCs
and also to focus more on identifying the efficacious methods of
generation of iPSCs.

Genetic and Epigenetic Abberations

Epigenetic memory in iPSCs and iDA neurons on cell fates
are noteworthy issues. They are linked to their originators or
else sustaining marks of reprogramming after differentiation
[162,163]. Reprogramming techniques done by using reteroviruses
or lentiviruses should be substitutes by vectors which are non-
integrating, in order to associate with smaller molecules or else
for the expression of reprogramming genes, for the production
of iPS cells that are clinically useful [164]. There are a few PD
patients-derived iPSCs which has a number of gene mutations
in it, chromosomal structure mutations, point mutations, gene
duplications, and SNCA genes deletion, Parkin, LRRK2, GBA or more
[142,165-169]. It was proposed that iPSCs having SNCA mutation
(A53T) can be corrected by zinc-finger nuclease (ZFN)-mediated
nuclease method and genetic repair of the A53T mutation in iPSCs
from PD patients did not influence the property to transform into
DA neurons. Properly rectified iPSC lines from PD patients were
confirmed by sequencing analysis and PCR genotyping. LRRK2
G2019S mutation were repaired and this resulted in phenotypic
release in transformed cells [142].

Degree of Harmlessness and Stem Cell Purity

In order to generate DA neurons or NSCs from iPSCs for
the management of PD, it is important that the population of
untransformed or undifferentiated cells are lower than 1% in order
to be protected against tumor development post-transplantation.
FACS and other non-invasive magnetic selection are the sorting
out techniques generated for the cells obtained from iPSCs.
Furthermore, culture medium of cells should be without feeder
cells to escape animal contagion. Presently, feeder cells obtained
from murine sources are utilized to retain hiPSCs and hESCs.
Additionally, culture environment which has fetal bovine serum
(FBS) in it, is generally utilized for culturing the feeder cells. It will
result in allogenic cell contagion of cells generated from iPSC. A
current study generated a system free of feeder cells for culturing
the iPSCs and hESCs in the StemFit™ medium, making a huge
initiative for the production of GMP-standard cells feasible for
clinical use [170].

Is stem cell therapy a better control of symptoms or a
cure?

There are many articles and researches enlightening the
advantages of stem cell therapy and promises a better cure of
PD. The aim of stem cell therapy is not only to restore the lost
dopaminergic neurons but also to halt the disease progression. The
best achievement that can ever be achieved is the repair of striatal

dopaminergic innervation to the normal range. Fetal mid brain
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allograft has shown some improvement in patients lifestyle and
functional activity but still, it is not providing a cure [171]. Even
if the dopamine neurotransmitters are restored, it will again be
a question whether it will be effective in every advanced PD. We
have given a proposed model regarding our findings in Figure 1 as

a summary.

Conclusion

The occurrence of PD is increasing day by day, because of the
growing population of elderly. Its commercial and psychological
influences on the wellbeing of population as well as on those close
relatives and friends of the patients afflicted with PD seem to be
profound. Several treatments are available but none of them have
proved to be beneficial in decreasing the loss of DA neurons or
in reestablishing the normal levels of DA in striatum. There are
however a number of drugs for treating PD, but these are either
costly or have dangerous adverse effects. Currently, researches
have proposed propitious methods in place of drug therapies,
including stem cell grafting and gene therapy for PD and other
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neurodegenerative therapies. Studies are performed on the use of
all cell sources derived - fetal NSCs, ESCs, iPSCs and iDA neurons
in different animal and human models. NSCs transformed into
DA neurons in PD rat models as well as in placebo-controlled
trials, double-blind studies and clinical trials have proved to
produce noteworthy therapeutic effects. However, graft induced
dyskinesia were observed which were probably due the presence
of serotonin neurons among NSC population can be prevented by
using homogenous population of cells. Regarding hESCs, Clinical
trials have not been performed yet for the treatment of PD, though
in vitro studies have shown that they transformed into DA neurons
and improved motor deficits in animal models. Matter of concerns
however, are:

i. the stability in physical composition of DA neurons post-

transplantation, and

ii.  concerns regarding hESCs that remain undifferentiated
that have the potential for tumor development.
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Moreover, there are ethical concerns as well. Researchers are
on the way to great success in the generation iPSC derived cells
for treating PD. Though, no clinical trials have yet been performed
for PD, but they have proved therapeutically effective in animal
models. There are, however, restrictions and drawbacks associated
with iPSCs. Ethical concerns are also a problem. To understand
their entity and survival rates for treating PD, pre-clinical studies
might also be needed. Unless further studied and the degree of
their efficiency and harmlessness is established, iPSCs should not
be brought to clinical trials. Undifferentiated cells in iPSCs have
risks of tumor production, therefore, researchers are working
in carrying out direct production of DA neurons. Successful
approaches are made which show that directly induced DA neurons
(iDA) can be obtained from mouse and human fibroblasts by adding
transcription factors into them. Among the transcription factors,
two of them play an important role and these include Pitx3 and
Ascl1.Currently, researchers are working on most of these recent
stem cell therapies, with majority being performed only on animal
models, thus, degree of harmlessness and efficiency must be
satisfactorily determined and ethical issues must also be resolved.
Nevertheless, recent therapies and their advancements described
in this review provide us with hopes that efficient treatments for
PD will soon be established (Figure 1).
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