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Abstract

Recent developments in cardiovascular mathematics allow to simulate blood flow in the entire circulatory network or any isolated cardiovascular 
subsystem. Providing measurements of a Pulse Transit Time (PTT), or the averaged value for the Pulse Wave Velocity (PWV), the patient specific 
computational model can create personalized transfer functions, converting distal measurements to the set of cardiovascular biomarkers. The latter 
has a potential to build the feasible foundation for the personalized continuous self-monitoring of cardiovascular health based on portable mobile 
and wearable applications. Nevertheless, although being of a great interest, an accurate and reliable PTT-based Blood Pressure (BP) estimation 
barely exists nowadays due to the complexity of a BP regulation in a human body. 

In this paper we concentrate on a physics based computational modelling to assess interconnections of a PTT to BP in a bifurcated circulatory 
network. The PWV is interpreted as the speed of propagation along the forward running characteristic in a related hyperbolic Fluid Structure 
Interaction (FSI) differential problem. PTT is calculated by integrating the reciprocal of instantaneous PWV along the characteristic line. The Y.C. 
Fung’s exponential model is applied to describe mechanics of a thin and a thick-walled vessel, subject to the infinitesimally small or finite hyperelastic 
deformation. Recently published PTT and PWV based non-invasive and continuous BP monitoring methods are reviewed and analyzed. 
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Introduction

Pulse Arrival Time (PAT) is the generally established empirical 
marker for continuous non-intrusive blood pressure monitoring, 
which is defined as a time required for a pulse wave to travel from 
the heart to a peripheral site. A popular estimate of PAT is the time-
based delay between R wave peak of Electrocardiogram (ECG) and 
a characteristic point of a Photoplethysmogram (PPG). PAT consists 
of two components: the non-constant Pre-Ejection Period (PEP), 
which is a duration of the ventricle contraction up to aortic valve 
opening, and the Pulse Transit Time (PTT), which defines the peri-
od for the arterial pulse wave to travel from the aortic valve to the 
peripheral site.

    PE TP PT TA P= +        (1)

A simple measurement setup consisting of arm Electrocardio-
gram (ECG) and Peripheral Site Photoplethysmogram (PPG) allows 
to assess PAT as the time delay between ECG R peak and one of the 
optional points in the PPG waveform: peak, foot, maximum values  

 
of the slope, or the second derivative of PPG waveform. PEP can 
be derived noninvasively using for instance thoracic Impedance 
Plethysmogram (IPG) as described in [1-3]. Estimation of a systolic 
and diastolic BP is based on equivalence of the measured and mod-
el-based prediction of PTT. In general, prediction methods can be 
categorized into data-driven, physics-based and hybrid approaches. 
Data-driven approaches investigate relationship between BP and 
PTT through the linear or nonlinear regression analysis, employ-
ing a simple set of basic functions, or using artificial intelligence 
(neural network). Physics-based approaches assume that a reliable 
physical model describing connection of a PTT to BP is available. 
Hybrid approaches combines the methods to calibrate the person-
alized bio-physical properties, improving prediction.

As follows from the physical modelling, PTT and PWV are 
mainly affected by four factors: arterial compliance, cardiac out-
put, peripheral resistance, and a blood pressure. Most data driven 
approaches select the only single parameter as an independent 
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variable, which is a PTT or the averaged PWV, to predict systolic 
and diastolic blood pressures. The physics-based approach auto-
matically accounts for the full set of factors affected BP according 
to the physical model, i.e. cardiac output, stroke volume, vascular 
compliance, peripheral resistance. The following sections describe 
PTT based blood pressure estimation according to the classifica-
tion. Since many of the papers using data driven regression analy-
sis are listed in several reviews, we will not cite relating individual 
papers, focusing mainly on a physical modeling as a foundation for 
linking PTT to systolic and diastolic BP.

Data-Driven BP Estimation 
Multiple linear and nonlinear regressions have been explored 

by different authors using combinations of exponential, power, 
logarithm, polynomial and logistics functions to fit the experimen-
tal dataset of PTT (or PWV) vs BP [3-5]. In [6] the heart rate as a 
second independent variable in addition to PTT is introduced in a 
linear regression, which according to the authors improves the ac-
curacy of BP prediction. In the monograph [7] the Young’s modulus 

is presented as an exponential function of pressure, ( )0   expE PE α=  

where 
0E - is the Yong modulus at zero pressure, and α -empiri-

cal coefficient. As a result, the formal substitute of the modified 
elastic modulus E into the Moens-Korteweg expression for the 
PWV results in a pulse wave velocity dependent on a blood pres-

sure,    exp
2MKPMV
P

C
α

=
 
 
 

where MKC  is the Moens-Korteweg speed of 
propagation at zero pressure, α-is a calibrating constant. 

The mentioned approach is completely empirical, since it does 
not fit the paradigm of classical mechanics, which specifies physi-
cal nonlinearity by appropriate constitutive equations in terms of 
stress – strain components. The described expression cannot be de-
rived from the fluid-structure interaction model using any consti-
tutive equations. It could be converted to the linear regression (in 
a log scale) by application of logarithm to the expression for PWV, 
which results in

( )      ln a b TB PTP = − ∗      (2)

where   TT
V

P
L

PW
= , L  is the distance of a pulse propagation, a, 

b-are determined from the best fit procedure. Equation (2) remains 
nowadays a one of the most widely used technique for noninvasive 
continuous BP monitoring. The modified logarithm-based regres-
sion was successfully applied in [8] to monitor BP as a function of 
PTT under the effect of hydrostatic pressure due to hand elevations. 
The effect of including PEP in BP estimation is under investigation 
in different papers based on empirical regression analysis over dif-
ferent cohorts of human subjects [4,9,10]. The simplest approach is 
an attempt to estimate PEP as a percentage of the RR interval, with 
the following subtraction from PAT to obtain PTT [11]. There is still 
a controversial evidence from different authors regarding effect of 

PEP on BP. The impact of PEP on the overall PAT decreases with dis-
tance from the heart, so that for the short PATs, like ones extracted 
from the ear-worn device, correction with PEP is required.

Neural Network (NN) modeling has recently been in place pre-
dicting BP as a function of a set of measured parameters. In [12] 
a total of 17 parameters were selected as the set of independent 
variables being chosen as characteristic feature points from ESG 
and PPG signals. Two different neural networks have been used to 
predict separately brachial systolic and diastolic blood pressures 
as functions of ECG and PPG measurements. The maximum error 
range in the brachial BP prediction is reported in terms of a root 
mean square error RMSE=±5.2mmHg. In [13] the SVR (Support 
Vector Machine Regression) algorithm is applied to establish re-
lationship between human physiological data and systolic and di-
astolic BPs. The different number of main physiological indexes, 
obtained from ECG and PPG, include PTT, HR, SPO2 and others, are 
explored in application of NN modeling. The maximum error range 
of a brachial BP prediction is reported as ±10mmHg.

Few studies managed to compare different noninvasive BP 
estimations in a wide physiological BP range. None of data driven 
approaches proved to be ubiquitous, being able to monitor with a 
reasonable accuracy the only single feature of a BP, either systolic, 
or diastolic or a mean [3-5].

Physical Modeling BP Estimation 
In this section, we assess physics-based models’ capabilities 

to predict systolic and diastolic BP as a function of model required 
independent parameters. Considering an arbitrary pressure-area 

connection, ( )  P P A= ,we present system of conservation laws in the 
following non-conservative quasi-linear form

       0
A

t

A V
V A

x x

∂ ∂

∂ ∂∂
+ =

∂
+

       0A

f

V APV
x x

V

t ρ
∂ ∂

∂ ∂

∂
+ =

∂
+ (3)

where   A A
P

P∂
=
∂ ,

 V -flow velocity, fρ -fluid density. This system 
could be transformed to the decoupled system of equations for the 
characteristic variables (Riemann variables), which read

    0,       1 , 2i
i

i W
i

x

W

t
λ
∂

+ = =
∂

∂∂   
  (4)

Relating characteristic directions (eigenvalues) read

1,
1,2

2

      A

f

APdx
V

dt ρ
λ = = ±

 
 
 

    
(5)

and forward and backward running characteristics can be 
found accordingly
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1,2    
f

V A
A

W
PA d
ρ

= ± ∫

  

 (6)

Since the slope of a forward running characteristic line is deter-

mined by PWV = 1λ

( )1  ,P
dt

x
WV t

d
x−=

   
 (7)

Equation (7) serves to calculate the PTT required for the pulse 

wave to propagate through the VN  vessels, each of the length 

  1 : , ViL i N= , along the flow pathway from the left ventricle to the pe-
ripheral site.

( )1
0

1
  ,  

Nv Li
i

i
PWV x tPTT dx−

=
= ∑ ∫

    
(8)

Nonlinear Vs Linear Models

In this section three type of nonlinear models are reviewed 
following the papers [14, 15]: the infinitesimally Small Deforma-
tion Linear Elasticity Model (SDL), Small Deformation Hyperplastic 
Model (SDH) and Finite Deformation hyper elastic Model (FDH). 
The Fung’s exponential descriptor for passive behavior of arteries 
[16] presents strain energy density function for the pseudo elastic 
wall deformation in a form

( )    1 
2

qW
c

e= −
  

(9)

Here 2 2
 11 12 22    2  x xa aQ aθ θ= ∈ + ∈ ∈ + ∈ 11 12 22

 ,  , ,a a ac  are material 

constants, θ∈  and x∈  are the circumferential and axial strain com-
ponents. In a 1D problem strain energy of the wall can be simpli-

fied by setting 212  2    0,  a a θ η= = ∈ = . Equilibrium condition results 

in a generalized tube law for the hyperelastic wall MKc  -is the 

Moens-Korteweg speed at   0p = , ( )2

0    1 AA η= +  luminal radius 
and a wall thickness in a stress free condition.

( )
3

2 2 511
11 11

0 0

       2   1   1    a
mk

H W H A A
ca e c a O

R R A
p

A
η

θ

η ρ η
∂

= = ≅ − + − +
∂ ∈

    
    
      	

(10)

Equations (10) and (6) present the instantaneous PWV for the 
SDH model in a compliant hyperelastic artery as the following

2

 11
0 0

4           1 3  1 ,  mk

A A
V c k kP aW

A
V

Aλ λ= + = + −
 
 
  	

(11)

Model SDL is achieved by setting hyperelastic material coeffi-

cient to zero ( )11   0a = , so that the expressions for PWV in model 2 

follows from (10) at  1 kλ = .

Model FDH, which considers finite deformation, is derived 

based on the same expression for strain energy (8), where θ∈ and 

X∈ is interpreted as the Green-Lagrange strain components in cir-
cumferential and axial

directions accordingly. Relating Cauchy stress components.

2 2
11 12    ,         Q

x

w
c e s s a aθ θ θ θ θθ

θ

σ λ λ
∂

= = = ∈ + ∈
∂ ∈

2 2
12 22    ,         Q

x x x x
x

x x

w
c e s s a aθλ λσ

∂
= = = ∈ + ∈

∂ ∈
    

(12)

are governed by equilibrium conditions

2      x
r

R Rr
h H H

θ
θ θ

ρ λ ρ
σ ρ λ λ

λ
= = =

      
(13)

Here: , ,r xθλ λ λ  are the stretch ratios in circumferential, radial 
and axial directions accordingly; r, h-are the

luminal radius and thickness in a deformed state, 

  ;   ;   1 r r x

r h

R Hθ θλ λ λ λλ = = =
 

All three models have been tested against Histand and Anliker 
results on a PWV measurements presented in [17, 18] and repro-
duced in (Figure 1) by square markers. The experimental curve 
notably exhibits curvature starting from elevated level of pressure 
exceeding 140mmHg. Material parameters have been identified for 
each model independently, based on a best fit procedure. The Finite 
Deformation Hyper Elasticity (FDH) model and Small Deformation 
Hyper Elasticity (SDH) model have the highest quality of fitting 
process, creating practically the same regression line in (Figure 1) 
within the physiological range of BP. The Small Deformation Mod-
el with Linear Elasticity (SDL) was not able to fit the experimental 
curve at the quality of FDH or SDH models.
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Figure 1: The nonlinear model FDH produced the best fit of the PWV vs. transmural pressure function.

Figure 2: Simulation results show that within a physiological longitudinal pre-stress load effects PWV by ~ 3%. Tz denotes the axial physiological 
Lagrangian stress.

Dash lines indicate theoretical prediction. Square markers il-
lustrate the total set of experimental points. Using the properties 
extracted from the nonlinear model the lower (solid) line shows the 
effect on PWV using the partially nonlinear model SDH, combining 
hyper elasticity with small deformation. To illustrate the effect of 
a longitudinal force on PWV the variation of PWV due to the vari-
ability of a longitudinal pre-stress force is presented in (Figure 2). 
According to simulation within the realistic physiological range of 
a longitudinal stress, the relative deviation in PWV does not exceed 
3%.

Several PWV estimations presented in literature is based on 
its correlation with the BP and an arterial wall compliance. The 
study in [19] examined the impact of a systolic flow correction of 
a measured PWV on blood pressure prediction accuracy using data 
from two published in vivo studies. Both studies examined the rela-

tionship between PWV and blood pressure under pharmacological 
manipulation, one in mongrel dogs and the other in healthy adult 
males. Systolic flow correction of the measured PWV improves the 
R2 correlation to blood pressure from 0.51 to 0.75 for the mongrel 
dog study, and 0.05 to 0.70 for the human subjects’ study. The re-
sults support the hypothesis that systolic flow correction is an es-
sential element of non-invasive, cuff-less blood pressure estimation 
based on PWV measures.

Thick Wall Vessels

A novel mathematical model predicting PWV propagation with 
rigorous account of, blood vessel elasticity, and finite deformation 
of multi-layer thick wall arterial segments was studied in [20]. It 
was found that the account for the multilayer model affects distri-
bution of local parameters in the proximity of the external layer 
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(adventitia) and does not affect stiffness related to the internal lay-
er. The latter means that the single thick layer model is enough to 
predict PWV of an arterial segment. (Figure 3) depicts the depen-
dence of PWV on pressure for the Systole Phase (marked as “SBP”) 

and a Diastole Phase (marked as “DBP”) for three vessels of differ-
ent thicknesses of a human aorta. All results have been compared 
with the simplified thin walled model of a membrane shell interact-
ing with an incompressible fluid.

Figure 2: Simulation results show that within a physiological longitudinal pre-stress load effects PWV by ~ 3%. Tz denotes the axial physiological 
Lagrangian stress.

To explore inaccuracies induced by use of the less complex thin 
wall model, error in both PWV and blood pressure were calculated 
for a blood pressure of SBP/DBP = 150/95mmHg representing the 
median of stage 1 hypertension. The single layer thick wall model 
improves PWV accuracy by (4.0-8.4%) corresponding to the rela-
tive wall thickness (H/R1) range of 0.07-0.38. One of the goals for 
the model is PWV based blood pressure prediction, where the thick 
wall model offers an improvement of (3.3-19.4%). 

Calibration Free Approaches

Willemet et al. [21, 22] proposed approach to use cardiovascu-
lar simulator for generation of a database of “virtual subjects” with 
sizes limited only by computational resources. In their study, the 
databases were generated using one-dimensional model of wave 
propagation in an artery network comprising of 55 largest human 
arteries. A linear elastic model was employed to describe deforma-
tion of arterial walls. The database is created by running the car-
diovascular model repeatedly. The seven model parameters were 
varied: elastic artery PWV, muscular artery PWV, the diameter of 
elastic arteries, the diameter of muscular arteries, Heart Rate (HR), 
SV and peripheral vascular resistance. 3325 healthy virtual sub-
jects presented a diversity of hemodynamic, structural and geomet-
ric characteristics. For each virtual subject, all characteristics are 
known at every point of the systemic arterial tree, i.e. anatomical 
and structural properties, as well as pressure, flow, pulse wave ve-
locity and area waves at the larger arteries, therefore allowing the 
computation of the exact value of the diagnostic tool. 

Huttunen et al. [23] used cardiovascular modelling of the entire 
adult circulation to create a database of “virtual subjects”, which is 
applied with machine learning to construct predictors for health 
indices. They carry out theoretical assessment of estimating aor-
tic pulse wave velocity, diastolic and systolic blood pressure and 
stroke volume using pulse transit/arrival timings derived from 
photoplethysmography signals. The generated database was then 
used as training data for Gaussian process regressors applied final-
ly to simulation. Simulated results provide theoretical assessment 
of accuracy for predictions of the health indices. For instance, aor-
tic pulse wave velocity was estimated with a high accuracy (r>0.9. 
Similar accuracy has been reached for diastolic blood pressure, but 
predictions of systolic blood pressure proved to be less accurate (r 
> 0.75). 

Conclusions

Developed technologies in general allow to implement a PTT/
PAT-based system to predict continuously cardiovascular health 
markers such as arterial blood pressure, cardiac output, arterial 
stiffness. However, none of approaches is able so far to monitor 
accurately all cardiac markers for the wide range of physiological 
conditions. The limitations to be addressed in future are the fol-
lowing. First, each model must be investigated for its limitations. 
We believe that a calibration stage is required to build a reliable 
simulator within the range of investigated conditions. Also, most 
of the research addresses healthy population, which is character-
ized by different behavior of a vascular system rather than group 
with medical conditions. In the current review we only consider 
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pulse transit and arrival type of time information as the input to the 
predictor. It would be beneficial to develop approaches that do not 

need reference measurement for the aortic valve opening/R-peak. 
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