

Tunneling Nanotube-Mediated Mitochondrial Transfer: A New Approach to Cell Protection

Aydın Böyük¹, Ceren Bilgi², Eda Kutlu¹, Dilek Akbaş² and Tuba Gökdoğan Edgünlü^{3*}

¹Faculty of Medicine, Muğla Sıtkı Koçman University, Turkey

²Department of Molecular Biology and Genetics Faculty of Science, Muğla Sıtkı Koçman University, Turkey

³Department of Medical Biology Faculty of Medicine, Muğla Sıtkı Koçman University, Turkey

***Corresponding author:** Tuba Gökdoğan Edgünlü, Faculty of Medicine Department of Medical Biology, Muğla Sıtkı Koçman University, 4800 Muğla, Turkey.

To Cite This Article: Tuba Gökdoğan Edgünlü, Tunneling Nanotube-Mediated Mitochondrial Transfer: A New Approach to Cell Protection. *Am J Biomed Sci & Res.* 2020 - 7(1). AJBSR.MS.ID.001119. DOI: [10.34297/AJBSR.2020.07.001119](https://doi.org/10.34297/AJBSR.2020.07.001119).

Received: January 16, 2020; **Published:** January 29, 2020

Abstract

Mitochondria are eukaryotic organelles involved in crucial biochemical processes in cells and owing to their importance in cellular functions; many studies have been conducted to demonstrate the effects of mitochondrial transfer between physically separated cells. Tunneling nanotubes have been denoted as the major route for mitochondrial transfer. Given that mitochondria regulate many cellular processes; perturbation in their internal organization ultimately leads to cellular failure. Interventions by using stem cells have shown that cell injury as a result of mitochondrial dysfunction caused by different insults can be reversed as miscellaneous studies have indicated

Keywords: Mitochondrial transfer; Tunneling nanotubes; Mesenchymal stem cells; Cell injury

Abbreviation: BMSCs: Bone marrow stromal cells; CEC: Corneal epithelial cells; CS: Cigarette smoke; ECs: Epithelial cells; EGF: Epidermal growth factor; EGFP: Enhanced green fluorescent protein; EGFR: Epidermal growth factor receptor; HUVECs: Human umbilical vein endothelial cells; iPSC-MSCs: Induced pluripotent stem cell-derived mesenchymal stem cells; MCAO: Middle cerebral artery occlusion; MMSCs: Multipotent mesenchymal stem cells; MPs: Membrane protrusions; mTOR: Mammalian target of rapamycin; NSCs: Neural stem cells; OGD: Oxygen-glucose deprivation; OXPHOS: Oxidative phosphorylation; PS: Phosphatidylserine; RCN: Rat cortical neurons; Rot: Rotenone; TNTs: Tunneling nanotubes; WJMSCs: Wharton's jelly-derived mesenchymal stem cells

Introduction

Many cellular metabolic pathways are dependent on sufficient supply of ATP; NAD; and FADH₂ which are produced in the mitochondria; double-membrane eukaryotic organelles containing 16.569 base-pair mtDNA [1]. Although mitochondria are considered as the "powerhouses" of the cell; they have a variety of critical disparate functions by which many cellular processes are regulated such as fatty acid and cholesterol synthesis; amino acid synthesis; management of redox balance; waste management; apoptosis; autophagy and senescence [2-4].

Lynn et al. has proposed that not only mitochondria and chloroplast but also eukaryotic flagellum and mitotic apparatus originated from endosymbiotic organisms [5]. It is considered that early "proto-mitochondria" evolved from alpha-proteobacterium

and many genomic and proteomic changes occurred throughout the evolutionary processes [6,7]. Given that mitochondria have crucial functions for cell metabolism; perturbation of their internal integrity may culminate in abnormal cell dynamics which can lead to disturbed cell functioning and even cell death.

Mitochondrial Transfer

In vitro mitochondrial transfer was first exemplified with an experiment in which mtDNA mutated and depleted A549 cells were rescued by human bone marrow stem cells [8]. It has been demonstrated that mitochondria can be donated intercellularly by means of different mechanisms such as tunneling nanotubes; cell fusion; extracellular vesicles; and mitochondrial extrusion [9]. Recently, many studies have been demonstrated regarding beneficial effects of mitochondrial transfer with both *in vitro* and

in vivo studies. Intercellular mitochondrial transfer may result in enhanced cell survival or cellular reprogramming and cell stress may enhance intercellular organelle transport to stressed cells [10]. The latter one has been illustrated by many experimental studies in which stressors stimulated mitochondrial transport towards stimulated cells. Chondrocytes that are stressed by Interleukin-1 beta or mitochondria specific stressors received mitochondria from MSCs [11]. ROT-induced corneal epithelial cells (CECs) enhanced their mitochondrial uptake from MSCs that have functional mitochondria [12]. This result highlights the fact that donor cells must have functional mitochondria to be able to have

therapeutic effects on injured cells. Treatment of human umbilical vein endothelial cells (HUVECs) with ethidium bromide resulted in MSC-derived tunneling nanotubes through which mitochondria are transported to injured HUVECs. An intriguing finding has also been detected that phosphatidylserine (PS) domains on HUVECs' cell surfaces were necessary for complete TNT formation. Annexin V; which binds to phosphatidylserine (PS); significantly reduced the number of TNTs but caused insignificant change in the number of membrane protrusions (MPs) [13]. Apparently, PSs on MPs are recognized by MSCs to fully form TNTs (All of the related points summarized in the (Table 1).

Table 1: A brief summary of mitochondrial transfer from donor cells to recipient cells and therapeutic effects.

Donor Cell	Recipient Cell	Disease Model	Consequence of Transportation	References
MSCs ¹	Chondrocytes	IL-1 β , oligomycin, and rotenone-mediated chondrocyte injury.	Not mentioned.	[11]
MSCs	HUVECs ²	Oxygen-glucose deprivation (OGD) ³ -mediated HUVECs injury.	Reduced apoptosis, improved cell viability.	[13]
MSCs	CECs ⁴	Rotenone (Rot) ⁵ -induced mitochondrial impairment of CECs.	Increased respiratory function, protection against cell death and proliferation inhibition.	[12]
iPSC-MSC ⁶	Bronchial cells	Cigarette Smoke-induced lung damage.	Reverting CS-induced injury.	[28]
BMSCs ⁷	Alveolar epithelial cells	Sepsis-induced acute lung injury.	Increased ATP production.	[27]
MSCs	NSCs ⁸	Cisplatin-induced neuronal damage.	Normalized mitochondrial membrane potential.	[14]
MSCs	Cardiac myocytes	Not mentioned.	Not mentioned.	[35]
MMSCs ⁹	PC12, astrocytes	Oxygen-glucose deprivation (OGD) astrocytes, ethidium bromide-treated PC12 cells, simulated ischemic lesion by middle cerebral artery occlusion (MCAO) ¹⁰ .	Decreased lactate production and normalized proliferation in PC12 cell, reduced ischemic damage.	[26]
T24	RT4	Demonstration of invasive capability of non-malignant RT4 cells after mitochondrial transfer.	Enhanced invasive ability.	[32]
MMSCs	RCNs ¹¹ , astroglial cells	Simulated ischemic lesion by middle cerebral artery occlusion (MCAO).	Neuroprotection	[31]
WJMSCs ¹²	Osteosarcoma cells	Not mentioned.	Rescued oxidative phosphorylation (OX-PHOS)	[34]

Antineoplastic drugs have detrimental effects on healthy cells and investigators have been researching therapeutic approaches against chemotherapy-induced cell damage. Cisplatin; as a neoplastic drug; induce neuronal cell damage and nasal administrations of MSCs *in vivo* normalized mitochondrial function and membrane potential [14]. These results imply that mitochondrial transfer can be accomplished in *in vivo* conditions following cellular dysfunction as a result of perturbation of mitochondrial bioenergetics and specific manipulations that enhance TNT development.

Tunneling Nanotubes (TNTs)-Mediated Intercellular Transport System

Although many intercellular transport mechanisms have been described so far; one of them has a pronounced involvement in intercellular transport *in vitro* and *in vivo*; named as tunneling

nanotubes (TNTs). TNTs were first discovered between PC12 cell line and have a diameter range from 20 to 500 nm mediating cellular communication between cells [15]. TNTs are membrane spanning protrusions formed between physically separated cells and are composed of F-actin and microtubules; the latter was exemplified in macrophages as thin and thick TNTs containing only actin or both actin and microtubules; respectively [16]. However, a recent study demonstrated the co-distribution of actin filaments; intermediate filaments and microtubules in tunneling nanotubes [17]. Following Rustom *et al.*; TNT configuration was observed in different cell types such as neurons; rat cardiac myocytes; rat kidney; myeloid cells and endothelial progenitor cells [18]. Kumar *et al.* has illustrated that TNTs are formed between epithelial cell lines and following TEM analyses have revealed that many mitochondria and ribosomes are shuttled in TNTs [19]. Several mechanisms have been proposed in terms of induction of TNT development. Treatment with stressful

insults culminates in enhanced TNTs. Subsequent analyses have proposed that proto-oncogene p53 expression is an important factor for TNT development. p53-deficient cells were unable to form TNTs.

In addition; EGFR and downstream pathways involving Akt; PI3K and mTOR were shown to be important regulators of TNT formation [20]. These results are consistent with the studies unveiled that mTORC2-mediated signaling pathways have been implicated in actin cytoskeleton organization [21,22]. Furthermore, inhibition of mTOR has led to the reduced TNT development [23]. Activation of EGFR; akin to mTOR; culminated in increased actin filament formation at the apical membrane of the cells which were treated with EGF [24]. Moreover, Wnt/Ca²⁺ signaling pathway has been shown to induce TNT formation [25]. Notably, mitochondrial transportation through TNTs is enhanced by overexpression of Miro1 in multipotent mesenchymal stem cells (MMSCs) and intravenous administrations of MMSCs reversed the effects of ischemia on neuronal functions more efficiently than those MMSCs without overexpression of Miro1 [26]. Taken together; these results suggest that miscellaneous mechanisms impact TNT development.

Impacts of Mitochondrial Transfer on *in vivo* Disease Models

In vitro studies emerge a number of questions regarding whether mitochondrial transfer is seen in only *in vitro* conditions or it can be seen in *in vivo* conditions as well. *Islam et al.* has noted that bone marrow stromal cells (BMSCs) are able to transfer mitochondria to injured alveolar epithelial cells in an *in vivo* acute lung injury model [27]. In another study; induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were shown to have beneficial effects on Cigarette-Smoke induced lung damage; whereas bone marrow-derived mesenchymal stem cells (BM-MSCs) are less effective in attenuating lung damage compared to iPSC-MSCs in a CS-induced rat model [28]. Additionally, mitochondrial transfer from iPSC-MSCs to epithelial cells (ECs) via TNT alleviates asthmatic inflammation [29]. Similarly, iPSC-MSCs and BM-MSCs can donate mitochondria to cardiomyocytes with doxycycline-induced damage [30]. Stroke is an important disease owing to its high risk of sequelae. That's why it might has drawn attention to investigate therapeutic approaches.

Babenko et al. illustrated therapeutic effects of MMSCs in the setting of stroke by the study in which neuroprotection has been accomplished following mitochondrial transfer to rat cortical neurons (RCN) [31]. On the other hand, mitochondrial transfer might have adverse effects. Such condition has been demonstrated in a study in which malignant T24 cells enhanced non-malignant RT4 cells' invasive ability by transferring mitochondria through TNTs [32]. Proliferation and invasiveness of cancer cells increased due to recovered oxidative phosphorylation (OXPHOS) followed by mitochondrial transfer [33]. A similar research determined

that osteosarcoma cells rescued from impaired oxidative phosphorylation by WJMSCs [34, 35]. It is also possible that chemoresistance can be gained through transfer of mitochondria. Such finding has been observed in a study in which endothelial cells were found to be contributed to chemoresistance development by transferring mitochondria to cancer cells [36].

Conclusion

As we reviewed here; TNT formation mechanism depends on many signaling pathways, but it remains to be fully elucidated. Understanding this peculiar cellular communication system would increase our chance to develop more efficient therapeutic approaches. Whilst stem cell therapy *per se* remains to be an important entity; mitochondrial transfer through stem cell donation may serve as a therapeutic treatment in the future.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Patananan AN, Wu TH, Chiou PY, Teitel MA (2016) Modifying the Mitochondrial Genome. *Cell Metab* 23(5): 785-796.
2. Abate M, Festa A, Falco M, Lombardi A, Luce A, et al. (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. *Semin Cell Dev Biol* 98: 139-153.
3. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. *Trends Cell Biol* 10(9): 369-377.
4. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cell ular metabolism. *Nat Cell Biol* 20(7): 745-754.
5. Sagan L (1967) On the origin of mitosing cells. *J Theor Biol* 14(3): 255-274.
6. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The Origin and Diversification of Mitochondria. *Curr Biol* 27(21): R1177-R1192.
7. Gabaldón T, Huynen MA (2004) Shaping the mitochondrial proteome. *Biochim Biophys Acta* 1659(2-3): 212-220.
8. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. *Proc Natl Acad Sci* 103(5): 1283-1288.
9. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. *Front Cell Dev Biol* 4: 107.
10. Rogers RS, Bhattacharya J (2013) When cells become organelle donors. *Physiology (Bethesda)* 28(6): 414-422.
11. Bennett MP, Vivancos-Koopman I, Seewald L, Wells K, Robinette T, et al. (2019) Intercellular mitochondrial transfer from mesenchymal stem cells to stressed chondrocytes. *Osteoarthritis and Cartilage* 27: 51-52.
12. Jiang D, Gao F, Zhang Y, Wong DS, Li Q, et al. (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. *Cell Death Dis* 7(11): e2467.
13. Liu K, Ji K, Guo L, Lu H, Shan P, et al. (2014) Mesenchymal stem cells rescue injured endothelial cells in an *in vitro* ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. *Microvasc Res* 92: 10-18.
14. Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ (2018) Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects

against the neurotoxic effects of cisplatin. *Acta Neuropathol Commun* 6(1): 139.

15. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, et al. (2004) Nanotubular highways for intercellular organelle transport. *Science* 303(5660): 1007-1010.

16. Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, et al. (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. *J Immunol* 177(12): 8476-8483.

17. Resnik N, Erman A, Veranič P, Kreft ME (2019) Triple labelling of actin filaments, intermediate filaments and microtubules for broad application in cell biology: uncovering the cytoskeletal composition in tunneling nanotubes. *Histochem Cell Biol* 152(4): 311-317.

18. Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes--from electrical signals to organelle transfer. *J Cell Sci* 125(5): 1089-1098.

19. Kumar A, Kim JH, Ranjan P, Metcalfe MG, Cao W, et al. (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. *Sci Rep* 7: 40360.

20. Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. *Cell Death Differ* 18(4): 732-742.

21. Anglker N, Rüegg MA (2013) *In vivo* evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. *Bioarchitecture* 3(4): 113-118.

22. Jacinto E, Loewenthal R, Schmidt A, Lin S, Rüegg MA, et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. *Nat Cell Biol* 6(11): 1122-1128.

23. Desir S, Dickson EL, Vogel RI (2016) Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. *Oncotarget* 7(28): 43150-43161.

24. Rijken PJ, van Hal GJ, van der Heyden MA, Verkleij AJ, Boonstra J, et al. (1998) Actin polymerization is required for negative feedback regulation of epidermal growth factor-induced signal transduction. *Exp Cell Res* 243(2): 254-262.

25. Vargas JY, Loria F, Wu YJ, Córdova G, Nonaka T, et al. (2019) The Wnt/ Ca^{2+} pathway is involved in interneuronal communication mediated by tunneling nanotubes. *EMBO J* 38(23): e101230.

26. Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, et al. (2018) Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. *Molecules* 23(3): 687.

27. Islam MN, Das SR, Emin MT, Wei M, Sun L, et al. (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. *Nat Med* 18(5): 759-765.

28. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, et al. (2014) Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. *Am J Respir Cell Mol Biol* 51(3): 455-465.

29. Yao Y, Fan XL, Jiang D, Zhang Y, Li X, et al. (2018) Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. *Stem Cell Reports* 11(5): 1120-1135.

30. Zhang Y, Yu Z, Jiang D, Liang X, Liao S, et al. (2016) iPSC-MSCs with High Intrinsic Miro1 and Sensitivity to TNF- α Yield Efficacious Mitochondrial Transfer to Rescue Anthracycline-Induced Cardiomyopathy. *Stem Cell Reports* 7(4): 749-763.

31. Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, et al. (2015) Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. *Stem Cells Transl Med* 4(9): 1011-1020.

32. Lu J, Zheng X, Li F, Yu Y, Chen Z, et al. (2017) Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. *Oncotarget* 8(9): 15539-15552.

33. Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, et al. (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. *Sci Rep* 5: 9073.

34. Lin HY, Liou CW, Chen SD, Hsu TY, Chuang JH, et al. (2015) Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. *Mitochondrion* 22: 31-44.

35. Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, et al. (2008) Cell-to-cell crosstalk between mesenchymal stem cells and cardiomyocytes in co-culture. *J Cell Mol Med* 12(5A): 1622-1631.

36. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, et al. (2013) Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. *J Transl Med* 11(94): 1479-5876.