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Abstract

Type 1 diabetes mellitus (T1D) is a chronic T-cell mediated autoimmune disease that progressively destroys β-cells in Langerhans islets. T1D 
develops mainly in children and adolescents. Genetic, immunological and environmental factors are implicated in the mechanisms of β cell death 
leading to absolute insulin deficiency. ER stress, is also implied in the β cell apoptosis. However, oxidative stress, widely studied for its role in the 
complications of diabetes, can be pointed out as a most significant factor in the pathogenesis history of T1D. In this review, we present the part of 
each cited factor in the β cell death with particular attention to the various arguments in favor of the role of early oxidative stress in the development 
of T1D.
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Introduction
Diabetes is one of the most prevalent diseases in the world. 

According to the WHO, diabetes currently affects more than 422 
million people worldwide and more than 1.6 million deaths [1]. In 
its two major forms, type 2 and type 1 diabetes cause many compli-
cations and worsen patients’ health. If the causes of type 2 diabetes 
are more or less clear and obvious, those who cause type 1 diabetes 
(T1D) are not yet, despite scientific progress. T1D represents about 
10% of the total number of diabetics. If it is characterized essential-
ly by a high level of glucose in the blood, a common peculiarity with 
type 2 diabetes (T2D), it differs from the first in its patho-physi-
ology and etiology. T1D is classically described as an autoimmune 
disease-specific for β-cells in pancreatic islets. This definition is 
supported by a large number of experimental and clinical scientif-
ic studies advocating the involvement of the immune system and 
leading to the development of type 1diabetes. The diagnosis, which 
is based on hyperglycemia, shows the presence of several types of 
antibodies [2]. The destruction of β cells is a final step in a cascade 
of very complex events involving factors related to immunity, ge-
netics and the environment. Oxidative stress is another source of 
factors that would be involved in the physiopathology of T1D. Ox 

 
idative stress can be endogenous or exogenous. In both cases, the 
consequences on the survival of β cells are more and more men-
tioned [3, 4].

Role of Immunity

The clinical manifestations of T1D in humans are always a late 
event, preceded by a silent subclinical phase that lasts for several 
months or even years. The biological analyses show the presence of 
various types of antibodies (anti-insulin Ac, anti-GAD Ab, anti-IA2 
Ab, anti-ZnT8...) indicating the destruction of β cells. The presence 
of these antibodies characterizes an ultimate stage of a cascade of 
very complex events of autoimmunity. However, brilliant studies 
conducted by Simoni and his collaborators (2011) show the im-
portant role of the innate immunity that precedes autoimmune re-
actions and therefore opens up other fields of investigation. Innate 
immunity is the first step whose consequences lead to the instal-
lation of β-cell-specific autoimmunity because it offers the initial 
inflammatory site in the action of TCD8 lymphocytes by pDC den-
dritic cells. Studies conducted on 2-3-week-old NOD mice show the 
presence of innate immunity cells: neutrophils, B-1 lymphocytes 
and dendritic cells [5,6]. The role of pDCs in T1D is related to the 
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production of an IFNα cytokine. This cytokine will contribute to the 
activation of auto reactive CD4 and CD8 T cells in the first phase. In 
the second phase (Effector phase), activation of pDC leads to pro-
duction by these cells an immunosuppressive enzyme [7]. pDCs can 
present antigens derived from β cells, the necessary step for the 
activation of self-reactive T cells. 

B-1a lymphocytes were also detected in the pancreas of NOD 
mice. It appears that these cells are essential for the recruitment of 
T cells into the pancreas by influencing the expression of adhesion 
molecules, including VCAMs that allow the entry of lymphocytes 
into the pancreas [8]. Macrophages present in insulitis have an APC 
function and produce pro-inflammatory cytokines (ie TNF-α and 
IL-1β) that promote the expression of apoptosis-inducing receptors 
(ie Fas) on β-cells [9]. Although their role is not yet well understood, 
neutrophils are also observed in NOD mice of 2-3 weeks. The iNKT 
cells producing IL17 are present in the pancreas of the NOD mice 
where they express IL. This interleukin can induce the production 
of nitric oxide (NO) and thus cause the death of β cells. It can also 
bind to its membrane receptor on the surface of β cells and induce 
the release of chemokines by them [5]. Among the chemokines are 
CXCL10, which leads to the recruitment of immune cells and the 
destruction of β cells [10,11]. B1 lymphocytes recruited into the is-
lets. They produce anti-DNA IgG antibodies that will complex with 
DNA and induce neutrophil activation. These produce the antimi-
crobial peptide CRAMP. The multimolecular complex, composed of 
anti-DNA IgG and CRAMP, activates pDCs by TLR9 and induces the 
production of type 1 IFN that will induce the activation of the adap-
tive immune system and the generation of a strong auto-reactive 
response by CD8 + T cells [12]. The mechanism of β-cell destruc-
tion by CD8 + T cells involves Fas/Fas-L interaction, granzyme/ 
perforin production, and pro-inflammatory cytokine production. 
Once all β cells are destroyed, CD8 T cells leave the pancreas [6]. 
In T1D, genetic factors can modulate the autoimmune potential by 
controlling the generation and expansion of self-reactive T cells. 
The INS insulin gene is involved in these reactions. The tandem nu-
cleotide repeat (VNTR) variables located 596 bp upstream of the 
INS insulin gene promoter site can regulate the transcription of 
insulin messenger RNA into the pancreas and thymus [13]. Class 
I VNTR predisposition alleles induce high expression of mRNA in 
the pancreas and at low levels in the thymus [14,15] leading to less 
effective elimination (positive selection) of anti-insulin T cells and 
their presence in larger amounts in the circulation and triggered an 
autoimmune T1D response.

Role of Genetic

In addition to the role of the immune system, there is also evi-
dence that a genetic predisposition exposes some people to this dis-
ease [16]. The different family studies of T1D, show that 6 to 10% 
of patients have a family history of diabetes in the first degree, the 
prevalence is of the order of 0.3% [17]. Homozygous twins have 
a concordance rate for T1D of about 40% [18]. The risk of T1DM 

progression is due to specific HLA DR / DQ alleles. The human leu-
kocyte antigen (HLA) -DRB1, HLA-DR3 genes have shown a stron-
ger association with the disease [20] as is the case for example for 
the combinations DRB1 * 03-DQB1 * 0201 ( DR3 / DQ2) or DRB1 * 
04-DQB1 * 0302 (DR4 / DQ8). Also, the HLA DQB1 * 0602 allele is 
associated with dominant protection against T1D in several popu-
lations [19]. The three sets of HLA-B-DR3 haplotypes, mainly B58-
DR3, B50-DR3, and B8-DR3, showed modulated (variable) suscep-
tibility for T1D worldwide [20]. Other studies have revealed that 
other genes outside the MHC are also associated with T1D, such as 
genes involved in inflammation and autoimmunity [21] and more 
recently, BTNL2 [22]. The miRNA studies also show that they can 
also be used as markers for T1D. Samandari et al. (2017) show, for 
example, that 6 mi-RNAs appear to be associated with DT1. hsa-
miR-197-3p is linked to 6 genes: TUSC2, CD82: related to cancers. 
NSUN5 encodes a methyltransferase. BMF and PMAIP1 are involved 
in apoptosis while MTFD1 is involved in vitamin metabolism (Sa-
mandari et al., 2017). The micro-RNAs miR-146a and miR-155 can 
provide information on the residual beta cells and kinetics of the 
evolution of T1D [23].

Role of the Environment

Studies on genetic susceptibility confirm its role in T1D. How-
ever, arguments in favor of environmental conditions are raised. 
Studies have also revealed that approximately 60% of children who 
develop T1D develop the first antibodies in the first two years of 
life [24,25], which means that of the environment may be involved 
most likely early in the patients’ lives. Thus, the role of viral in-
fections (enteroviruses) [26,27] and early feeding [28] have been 
pointed for many years. Vitamin D deficiency and obesity are also 
highlighted [29,30]. Also, the methylation of certain genes such as 
the TNFα gene has been detected in children newly diagnosed with 
T1D [31]. The methylation of the INS1 and INS2 genes NOD mice 
islets and in humans has been raised [32]. However, disparate and 
unconfirmed opinions of many doctors indicate that the rates of 
this pathology are increasing considerably, and that the role of the 
environment could be strongly involved.

Oxidative Stress

Oxidants are mainly reactive oxygen and nitrogen species (ROS 
and NOS) produced during natural processes. They play many 
important physiological roles in healthy cells. They are produced 
during several reactions: glucose oxidation, non-enzymatic pro-
teins glycation, and proteins glycated degradation [33]. Through 
its activity, the mitochondrion is at the heart of oxidative stress. 
ROS are produced there by the different enzymes of the respirato-
ry chain. The mitochondria produce approximately 90% of cellular 
ROS [34]. The rest of the ROS are produced in other cellular com-
partments including the ER and the peroxisome. The availability 
of enzymatic and non-enzymatic antioxidants protects the body 
against toxic effects of ROS and NOS. 
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Oxidative stress is the state of the body in which a prooxidant / 
antioxidant balance is disordered. The unsteadiness or disorder is 
generated when an increasing rate and/or a decreasing of antioxi-
dants levels are observed. Free radicals are reactive oxygen species 
(ROS) such as OH., O-2., ... and reactive species of nitrogen (NOS) 
like NO. and NO2.. ROS and NOS include other non-radical species 
like H2O2, ONOO-, 1O2 and HOCl which are harmful to the organisms.

Oxidative Stress and Inflammation 

Inflammation is the physiological response of the vascularized 
tissues following an attack causing impairment of tissue integrity. 
The causes are variable, of endogenous or exogenous origin [35]. 
Inflammation is a defense mechanism of the body against various 
aggressors. It is acute or chronic. The mechanisms used in both 
cases are complex and lead to the production of pro-inflammato-
ry cytokines, ROS and NOS [36]. Acute inflammation is rapid and 
self-limiting. It is part of the innate immunity that protects the or-
ganism from different microorganisms. It is organized in several 
stages: vascular phase, cell phase and resolution phase [37]. The 
recruitment of immune system cells such as neutrophils contrib-
utes to the production in the site of inflammation of free radicals 
derived from ROS and NOS and proteases [38]. The resolution of 
inflammation is a spontaneous phenomenon and characterized 
by the recruitment of anti-inflammatory mediators such as IL-10, 
TGFβ and glucocorticoids. Monocytes are also involved and allow 
the elimination of cellular debris [39]. The elimination of the chem-
ical mediators used in the first two stages will also be eliminated. 
Expression of CD195 on the surface of apoptotic human polynucle-
ar cells allows them to sequester pro-inflammatory cytokines [40]. 
CD195 expression is inhibited by pro-inflammatory stimuli, includ-
ing tumor necrosis factor, leading to chronic inflammation. Mono-
cytes are also involved and allow the elimination of cellular debris 
[39]. The elimination of the chemical mediators used in the first 
two stages will also be eliminated. Expression of CD195 on the sur-
face of apoptotic human polynuclear cells allows them to sequester 
pro-inflammatory cytokines [40]. CD195 expression is inhibited by 
pro-inflammatory stimuli, including tumor necrosis factor, leading 
to chronic inflammation.

Endoplasmique Reticulum Stress in β Cell

Β cells are cells characterized by their ability to produce and 
secrete a high amount of insulin. The synthesis of this peptide is 
modulated by the level of blood glucose. To cope with high blood 
sugar levels, β cells synthesize more insulin. Adequate refolding of 
insulin is crucial. RE stress generated by the accumulation of mis-
folded insulin leads to apoptosis of β cells and the development of 
diabetes [41,42]

UPR Response: The presence of stress in the ER triggers the 
unfolded protein response (UPR) [43]. It is a set of mechanisms 
whose objective is to decrease the number of proteins accumulated 
in the ER. UPR slows the synthesis of new proteins of the secretion 

pathway, increases the synthesis of proteins involved in the fold-
ing of neo-synthesized proteins such as chaperones and foldases, 
and triggers the degradation of irreversibly misfolded proteins by 
the proteasome [44]. If all the actions fail, the UPR can then tip the 
cells into the apoptosis pathways [45]. UPR actions are provided 
by three ER membrane proteins: PERK, ATF6, and IRE1 bound and 
held in their inactive state by GRP78. GRP78/BiP is a major chap-
erone protein implied for protein quality control of the ER [46]. 
When misfolded proteins accumulate in the ER, GRP78 binds mis-
folded proteins, thereby releasing the protein sensors of ER stress 
and allowing for the activation of the cytoprotective UPR [44,47]. 
PERK autophosphorylates in trans, activates eIF2α. Phosphoryla-
tion of eiF2α activates the translation of the transcription factor 
ATF4 (activating transcription factor 4). ATF6 translocates to the 
Golgi apparatus and is cleaved to yield a transcription factor that 
up-regulates the expression of molecular chaperones to aid in the 
folding of accumulated proteins in the ER. IRE1 autophosphory-
lates in trans and splices XBP-1 mRNA. The spliced mRNA encodes 
a transcription factor that up-regulates the expression of addition-
al molecular chaperones and UPR proteins to relieve ER stress. If 
ER stress is too great or prolonged, the UPR induces expression of 
pro-apoptotic proteins such as CHOP (CEBP homologous protein) 
[48,49,74,75,79]. 

IRE1 has also been shown to form a trimeric complex with 
TRAF-2 (TNF receptor-associated factor) [50] and ASK-1 (apopto-
sis signal-regulating kinase 1) and activate the JNK pathway (from 
Jun N-terminal kinase), which leads to apoptosis [51,52]. Also, 
pro-apoptotic proteins Bax (Bcl-2 – associated X protein) and Bak 
(Bcl-2 homologous antagonist killer) in persistent ER stress, under-
go a conformational change and cause the exit of Ca+

2 in the cytosol 
[53,79] the abnormally increased Ca+

2 concentration in the cytosol 
leads to several events which, activation of caspase-12, directly in-
volved in cell apoptosis [36,75].

β Cell, Oxidative Stress and Inflammation

In T1D, the role of oxidative stress can be observed at two lev-
els of the disease: First, oxidative stress is mainly involved in the 
various classic complications of diabetes. Many mechanisms have 
been elucidated to identify biological markers: lipid oxidation 
markers such as MDA, Isoprostanes and hydroperoxide lipids [33] 
and markers of protein peroxidation. Glucose reacts easily with the 
free amino groups of proteins to form Amadori products. These are 
relatively unstable and degrade into advanced glycation products 
(AGEs) or Maillard products [55]. In the presence of transition met-
als (such as iron), glycated proteins can give an electron to molecu-
lar oxygen, leading to oxygen free radicals [56].

Several cellular studies have shown that under oxidative stress 
conditions, insulin signaling is altered by several mechanisms in-
cluding induction of IRS serine/threonine phosphorylation, dis-
ruption of cellular redistribution of insulin signaling components, 
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decreased GLUT4 gene transcription, and impaired mitochondrial 
activity [57] leading to insulin resistance [58].

ROS and oxidative stress also lead to the activation of multiple 
serine/threonine kinase signaling cascades [59]. The serine / thre-
onine kinases involved in insulin signaling (PKC, PKB, mTOR and 
GSK-3) can be directly activated by ROS [59,60] or indirectly, by 
inducing a number of stress-sensitive signaling pathways, such as 
NF-kB, JNK / SAPK and p38 MAPK [59-61]. These activated kinases 
can act on several potential targets of the insulin signaling pathway, 
including the insulin receptor and the IRS protein family. For IRS-
1 and IRS-2, an increase in serine phosphorylation decreases the 
extent of tyrosine phosphorylation [59]. As a result, the association 
and activity of the downstream signaling molecules are decreased, 
resulting in PI3K quenching and reduction of IGU (insulin-depen-
dent glucose uptake) thereby decreasing glucose uptake and asso-
ciated decrease in ROS production [62].

On another level, it is interesting to point out that if chronic hy-
perglycemia is at the origin of oxidative stress, this could also be at 
the origin of T1D by a phenomenon of apoptosis of pancreatic beta 
cells [77]. Oxidative stress would be involved in the early stages of 
the disease. According to some studies, a state of oxidative stress 
could explain the disorders of insulin secretion and the death of β 
cells [59]. Studies have shown that oxidative stress is one of the fac-
tors involved in this process, without defining with certainty the 
roles of the studied molecules in the death of β cells. [63], For exam-
ple, describe the role of NADPH oxidase in the secretion of insulin 
by β-cells in the presence of hyperglycemia.

The overproduction of ROS-producing enzymes such as SOD, 
CAT [64], NADPH oxidase, notably NOX1 and NOX2 isoforms and 
XO / XDH [57,65,66] or CRP [67], accompanied by the decrease in 
GSH seem to be involved in the pathogenesis of β cells. Several fun-
damental transcription factors for the cell are the targets of ROS 
/ NOS among which the Nuclear Factor-KB (NF-kB) and the Acti-
vator Protein-1 (AP-1) [68]. Inhibition of those factors by ROS or 
NOS conduce β cell to the apoptosis pathways. The question that 
remains is: What is the relationship between oxidative stress and 
ER stress? the answer is certainly not yet elucidated but some in-
formation are reported by few studies : i)As we explained above, ii) 
the ER stress activates UPR which induces expression of pro-apop-
totic proteins such as CHOP [49], iii) the calcium influx from the 
ER, during ER stress, into cytosol than into mitochondria increase 
the release of cytochrome C and in the consequent triggering ROS 
production [76] and caspase-mediated cleavage of the IRE1 with-
in its cytoplasmic linker region generates a stable IRE1fragment 
comprising the ER-lumenal domain and transmembrane segment 
(LDTM). LDTM exerts negative feedback over apoptotic signaling 
by inhibiting recruitment of the key pro-apoptotic protein BAX to 
mitochondria [69]. 

Morever, it has been reported in an old publication that inhibi-
tion of CHOP-mediated apoptosis merely delays, but does not halt, 

β cell loss and disease onset [70]. These data suggest that apoptosis 
may not be the only mechanism by which ER stress causes β cell 
death and diabetes. Paradoxically, [49] indicate that IRE1α kinase/
endoribonuclease (RNase) triggers apoptosis and suggest that inhi-
bition of IRE1α using small molecules can spare ER stressed β-cells 
from death [71-73].

β Cell Death

Apoptosis is the death of β cells following the activation of 
caspases by exogenous or endogenous signals. The principal path-
ways of apoptosis are the FasL/Fas, perforin/granzyme, IL-1β, TNF 
and INFγ pathways triggered mainly by exogenous signals released 
by the cells of the immune system [3,8]. Mitochondria are at the 
heart of these events because the mitochondrial stress generated 
by the activity of mitochondrial enzymes (SOD, CAT , NADPH ox-
idase, Cytochrome c oxidase ..) or under the influence of several 
signals leads to the release of cytochrome C which can activate the 
caspase events [3]. The signals can also be endogenous. Because of 
its important protein synthesis and secretion activity, β cells un-
dergo oxidative stress in the Endoplasmic Reticulum (ER) [4]. Er-
rors in synthesis and refolding cause the accumulation of damaged 
and misfolded proteins and activate proteasomes in the secretory 
route [78]. Other mechanisms for activating apoptosis are under-
way study. 

Finally, the study of the phenomenon of β-cell apoptosis is al-
ways associated with the presence of T1D, i.e. in the presence of 
autoimmunity and a confirmed genetic predisposition. This is the 
case of studies on animal models predisposed genetically for the 
development of T1D, such as NOD mice, or on cell lines derived 
from these animals. The impact of the environment in these cases 
would be very limited and the interpretation of the results will al-
ways favor the impact of the immune system. Healthy animal stud-
ies or healthy β-cell lines could be used to study the role of the real 
environment in T1D.

Conclusion
Despite the high number of studies conducted on T1D and the 

role of different physiological components and pathological fail-
ures, there is still no clear explanation of the pathology. This is also 
the case of many autoimmune diseases. A careful reading of all of 
those studies points to the conclusion that T1D isn’t just an auto-
immune disease as it’s commonly described. It’s also complicated 
and multifactorial. The interaction between the genetic background 
and the triggering environment is certainly essential for the devel-
opment of autoimmunity and the death of insulin-producing cells. 
The loss of capital in β cells leads to the clinical manifestation of 
diabetes. Subsequently, oxidative stress, maintained by chronic hy-
perglycemia, promotes the development of various complications. 
However, the endogenous oxidative stress due to cellular activity 
or caused by exogenous factors and the related ER stress must be 
studied simultaneously to shed more light on its impacts on β-cell 
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dysfunction and in the early innate inflammation. The role of β 
cells and their microenvironment should be incriminated in under-

standing the pathophysiological history of the disease.
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