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Abstract 

The aging process involves accumulation of DNA damage, mitochondrial defects, progressive tissue degeneration and atrophy, and the 
development of metabolic dysfunction and weakness. Aging is also accompanied by decreased levels of nicotinamide adenine dinucleotide (NAD+), 
which can result in cell damage and even shorter life spans. NAD+ acts as an enzyme cofactor in many essential biological pathways and is a substrate 
for several regulatory proteins. Many studies have suggested that the upregulation of NAD+ precursors can increase levels of NAD+ in tissues or cells 
to delay aging. Clinical trials have been conducted on the safety and efficacy of NAD+. Here we provide a review of NAD+ metabolism and its role in 
aging-related therapy.
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Introduction
The aging process is influenced by a variety of factors and con-

sidered to be an irreversible process. Aging of an organism is ac-
companied by metabolic disorders and the impairment of physio-
logical function, as well as the development of age-related diseases 
[1-4]. There is abundant evidence that NAD+ plays an important role 
in aging, as it is involved in various biological functions and is a key 
regulator of stress resistance [5,6]. Levels of NAD+ steadily decline 
with age, resulting in altered metabolism and increased disease 
susceptibility [7-9]. NAD+ plays a key role in various energy metab-
olism pathways [6,10]. Additionally, NAD+ is a cofactor for many en-
zymes, such as poly (ADP-ribose) polymerases (PARPs), CD38, and 
sirtuins [11]. Sirtuins are NAD+-dependent histone deacetylase for 
a wide range of transcriptional regulators [10,12]. Overexpression 
of SIRT1 in the brains of mice has been shown to delay aging [13]. 
PARP is a major NAD+-degrading enzyme, which plays diverse roles 
in many molecular and cellular processes [14]. Inhibition of PARP-1 
increases mitochondrial metabolism via modulation of SIRT1 activ-
ity [15]. Another NAD+-degrading enzyme, CD38, had been associ-
ated with the decline in NAD+ levels during aging [16].

Mammalian cells cannot import NAD+ in vivo, so they must 
synthesize it either from tryptophan or the various forms of niacin  

 
taken up in the diet including nicotinamide mononucleotide (NMN) 
and nicotinamide riboside (NR) [17-20]. Recently, it was found in 
mice that supplementing with NAD+ precursors (including NMN, 
NR, and nicotinamide) or inhibiting the activity of NAD+-consum-
ing enzymes can increase the level of NAD+ in tissues and improve 
energy metabolism, thereby delaying aging and extending healthy 
life [15,21-24]. 

Currently, the anti-aging activity of NAD+ precursors is primar-
ily evaluated through measurement of aging markers in mouse 
behavior, accumulation of DNA damage, and mitochondrial activi-
ty. RNA sequencing has also been used to identify genes and path-
ways involved in the anti-aging mechanisms of NAD+ [20,22,25,29]. 
Furthermore, recent research has shown that biological age can be 
measured by analyzing the 353 DNA methylation sites of the Hor-
vath clock [30,31].

NAD+ Biosynthesis-Salvage Pathway
In vivo, NAD+ is an essential cofactor of dehydrogenase [32,33]. 

Nicotinamide coenzyme is an electron carrier which plays an im-
portant role in various oxidation-reduction reactions. Therefore 
NAD+ is a cofactor of many key enzymes in glycolysis, the tricarbox-
ylic acid cycle, and oxidative phosphorylation [34]. Age-associated 
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decline in NAD+ availability has an important effect on the aging 
process of many species [8,35,36]. There are three pathways for the 
synthesis of NAD+ in cells, involving many different precursors [37-
39]. Here we focus on the salvage pathway, which is important from 
a translational research perspective because it is the main source 
of NAD+ [40,41]. 

There are three pathways for the synthesis of NAD+ in cells: 

a.	 de novo from tryptophan; 

b.	 from nicotinic acid via the Preiss-Handler pathway; and 

c.	 from nicotinamide (NAM) via the salvage pathway [37]. 

NAM itself is a by-product of NAD+-degrading enzymes such as 
sirtuins and PARP. As shown in Figure 1, the first step of the sal-

vage pathway is catalyzed by nicotinamide phosphoribosyl-trans-
ferase (NAMPT), which converts nicotinamide and 5-phosphoribo-
syl-1-pyrophosphate into NMN [42]. Subsequently, nicotinamide 
mononucleotide adenylyltransferase (NMNAT) produces NAD+ 

from NMN and ATP [43,44]. NR can be converted by nicotinamider-
iboside kinase (NRK) into NMN which participating in the Salvage 
pathway [45]. NAMPT is the rate-limiting enzyme of the salvage 
pathway [42]. It has been hypothesized that reduced NAD+ synthe-
sis is one of the causes of lower NAD+ levels with aging, and this 
may be due to decreased activity of NAMPT [42,46]. Indeed, NAMPT 
levels are known to decline with age in many types of tissues [47-
49], whereas exercise increases skeletal muscle NAMPT expression 
[50].

Figure 1: The Salvage pathway NAM and NR are the main precursor for the salvage pathway.

In mammals, NAMPT has two different forms: intra- and ex-
tracellular [51]. The intracellular form is the one that participates 
in the salvage pathway of NAD+ synthesis [42], while the extra-
cellular form likely functions as a circulating cytokine [52]. Stud-
ies have shown that secretion of NAMPT is regulated by SIRT1 in 
vivo [53,54], and SIRT1 activity in turn depends on NAMPT which 
regulates level of NAD+ [55]. Increasing level of NAMPT may delay 
aging of individuals via SIRT1-dependent pathways [56]. NAMPT 
has been shown to regulate osteoblast differentiation in primary 
culture of mouse bone marrow-derived mesenchymal stem cells via 
NAD+-SIRT1 pathway. NAMPT deficiency may increase the risk of 
bone aging or fractures [48,57-59].

Levels of NAMPT significantly decrease with age in mice and 
humans [60,61]. Adipose tissue-specific overexpression of NAMPT 
in aged mice resulted in increased levels of circulating eNAMPT, in-
creased levels of NAD+ in multiple tissues, and extended lifespan 
[60]. 

In mammals NMNAT is the central enzyme of the NAD bio-
synthetic pathway [43,62]. There are three isoforms, NMNAT1, 
NMNAT2, and NMNAT3, encoded by different genes and localized 

to nucleus, Golgi apparatus, and mitochondria, respectively [43]. 
NMNAT1 directly control SIRT1 deacetylase activity at a set of 
target gene promoters [63]. Homozygous knockout of Nmnat1 in 
mice results in embryonic death [64]. Low levels of NMNAT2, high-
ly expressed in the brain and nervous system, could impair axon 
regeneration as well as axon survival in aging and disease [65,66]. 
NMNAT3 has been identified as the rate-limiting enzyme for mito-
chondrial NAD+ biosynthesis [67]. In addition, down-regulation of 
NMNAT3 gene expression in cells significantly impairs the capacity 
for mitochondrial respiration, suggesting that NMNAT3 plays a key 
role in mitochondrial NAD+ homeostasis [68].

Anti-aging effects of NAD+ 

Through its role as a substrate for sirtuins, CD38, and PARP, 
NAD+ regulates a variety of cellular process including energy me-
tabolism, DNA damage repair, gene expression, and oxidative stress 
response [11,34,69,70].

a.	 The Sirtuins Pathway

Sirtuins are evolutionarily conserved NAD+-dependent deacety-
lases. Increasing sirtuin expression has been shown to affect lifes-
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pan across various species [13,36,71,72]. Sirtuins have received 
significant attention since the discovery that the increased sirtuin 
silent information regulator 2 (Sir2) can extend yeast lifespan [72]. 
The closest mammalian homologue of this regulator is SIRT1[69], 
mainly localized in the nucleus but also present in cytosol [73]. Its 
nuclear export signal allows shuttling to the cytosol under specific 
circumstance [12]. It has been shown in vivo that NAD+-SIRT1 sig-
naling promotes mitochondrial activity [25]. Previous research has 
suggested that increasing SIRT1 in the brain, especially in the dor-
somedial and lateral hypothalamic nuclei, can delay aging and ex-
tend lifespan in mice [13]. More recently, heart-specific overexpres-
sion of Sirt1 was found to delay aging and protect against oxidative 
stress in the heart [74]. NR-SIRT1 signaling can inhibit cardiac stem 
cell senescence by improving mitochondrial function and muscle 
stem cell function, thereby enhancing life span in mice [25]. More 
research is needed to determine whether increased level of NAD+ in 
vivo can improve SIRT1 activity, thereby delaying aging [75]. 

b.	  The PARPs Pathway

PARPs are expressed by most eukaryotic cells and are involved 
in DNA damage detection and repair, cell death pathways and so on 
[14]. Aging is associated with an accumulation of DNA damage [76]. 
Depletion of NAD+ is involved in cell death through PARP-1 [70]. Al-
though this enzyme plays an important role in cells, over-activation 
of PARP-1 can lead to depletion of NAD+, reduction of ATP, reducing 
the activity of SIRT1, loss of mitochondrial function, and even cell 
death [70,77,78]. Increased level of NAD+, when SIRT1 is intact, can 
reduce the cell death caused by activation of PARP-1 in cardiac myo-
cyte [79].

c.	  CD38 and NAD+

CD38 is a multi-functional protein. Studies have shown that 
CD38 is the NADase in mammalian tissues [80,81]. It is thought 
to contribute to the age-related decline in NAD+ levels [23,80,82]. 
CD38 also acts as an antigen for B-lymphocyte activation and as an 
ecto-enzyme in endothelial and inflammatory cells [82,83]. Senes-
cent cells are known to express small molecules including secret-
ed cytokines, growth factors, and extracellular matrix modifiers to 
promote chronic sterile inflammation and fibrosis. This reaction 
process, known as the senescence-associated secretory phenotype 
[84-86], involves secretion of factors by senescent cells which in-
duce the expression of CD38 in non-senescent cells [82,87]. This 
increased CD38 activity can disrupt the fine balance between NAD+ 
and its reduced form, NADH, within a cell [82]. Recently, the small 
molecule CD38 inhibitor 78c was shown to reverse the age-related 
loss of NAD+ [28,83]. By increasing tissue levels of NAD+, 78c may 
be able to ameliorate metabolic disorder and other disruptions in-
volved in the aging process. In addition, animals treated with 78c 
show activation of longevity genes, which inhibit DNA damage [28].

NAD+ and NADH are in dynamic equilibrium within the cell 
[75]. Intracellular NAD+ can be increased in vivo through oral ad-

ministration of NAD+ precursor or by inhibiting the degradation of 
NAD+ [15,23,88]. Regulation of the NAD+/ NADH ratio in this way 
can improve mitochondrial function and has been shown to treat 
senile deafness in elderly mice [89].

NAD+ Repletion and Aging
One of the major causes of aging is progressive tissue degen-

eration and atrophy due to reduced somatic or stem cell function 
[22,90,91]. Adult stem cells are not only essential in continuously 
proliferating tissues (such as hematopoietic, intestinal, and skin 
systems) but also in normally quiescent tissues (such as skeletal 
muscle and the brain) that require regeneration after damage or 
exposure to disease [92]. NR supplementation improved meta-
bolic function in muscle and neural stem cells, in both young and 
old mice, thereby increasing lifespan [25]. NR treatment has also 
been shown to rejuvenate stem cells from aged mice and restore 
the impaired ability to repair gut damage [22]. Previous studies 
have shown that DNA damage of nerve cells, nerve stem cells, and 
muscle stem cells in mice can be reduced by NR supplementation 
[25,93]. NR has also been shown to ameliorate mitochondrial dys-
function and enhance oxidative metabolism in obese mice [94,95] 
and prolong the lifespan of mice through neuronal DNA repair and 
mitochondrial quality improvement [96,97].

Supplementation with NMN can restore age-related capillary 
rarefaction and increase blood flow in elderly mice, and it maybe a 
novel therapy to restore SIRT1 activity and reverse age-related arte-
rial dysfunction by reducing oxidative stress [98,99]. Mitochondrial 
disorders due to impaired oxidative phosphorylation (OXPHOS) are 
a cause of aging [100]. Long-term treatment with NMN in elderly 
C57BL/6J mice can improve metabolic dysfunction and ameliorate 
age-associated physiological decline [20]. NMN can also restore 
mitochondrial function, prevent neural death, and delay cognitive 
decline in a mouse model of Alzheimer’s disease [101,102]. Sup-
plementation with NAM was shown to improve blood sugar levels 
and metabolic capacity in HFD-fed mice. However, it had no effect 
on lifespan [103].

There are data showing that supplementation with NAD+ pre-
cursors enhanced the mitochondrial function of cells or stem cells 
in a SIRT1-dependent manner [25,94]. Furthermore, supplement-
ing NAD+ precursors in elderly mice improved mitochondrial func-
tion in hematopoietic stem cells and muscle stem cells, as well as 
extended lifespan [25,104]. NMN specifically was found to enhance 
the biological activity of mesenchymal stromal cells through the up-
regulation of SIRT1, thereby stimulating osteogenesis of the cells 
and protecting bone from aging to delay the aging of mice [105]. In 
elderly mice, NMN treatment improved capillary density through 
the NAD+-H2S signaling network to increase blood flow, endurance, 
and physiological status [27,29,106]. 

Inhibition of some NAD+-degrading enzymes could also lead 
to increased levels of NAD+ [15,23]. CD38, PARPs, and SARM1 all 
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degrade NAD+ inside the cell [23,77,80,107]. The activity of CD38 
increases with aging, contributing to the age-related decline in 
NAD+ [16]. Several small-molecule inhibitors of CD38 have been 
described [83,108-110]. Thiazoloquin(az)olin(on)e is one such in-
hibitor which could potentially be used as a therapeutic agent to in-
crease intracellular NAD+ level [28]. Inhibition of PARP1 has recent-
ly been reported to correct mitochondrial impairment [111,112] 
and has strong metabolic implications through its modulation of 
SIRT1 activity [15].

Measure Biological Age
Thus far, the anti-aging activity of NAD+ is mainly examined us-

ing RNA sequencing and gene set enrichment analysis to identify 
pathways of candidate biomarkers [20,22,25]. However, there is 
not yet a gold standard for aging biomarkers. The DNA clock may 
offer a better objective biomarker for the study of aging [30,31]. 
DNA methylation plays a critical role in the regulation of gene tran-
scription [113-118]. Senescence can be predicted and evaluated by 
detecting cytosine-5 methylation within CpG dinucleotides [30,31]. 
These age-related CpG characteristics are independent of gender or 
tissue type. Recent research has shown that biological age can be 
approximated by measuring levels of DNA methylation, a process 
known as the Horvath (or DNA) clock [30,31,119,120]. Age-related 
DNA methylation was first described for humans after cross com-
parison of thousands of CpG sites in Illumina Bead Chip microarray 
data [121,122]. Many of these age-associated CpG sites were then 
used as epigenetic age-predictors [30,31,120,123]. Three hun-
dred and fifty-three unique CpG sites were found to be predictive 
of biological age, independent of chromatin status or tissue source 
[30,31]. 

Petkovich et al. developed a robust predictor of mouse biologi-
cal age based on 90 CpG sites derived from partial blood DNA meth-
ylation profiles [124]. Stubbs et al. further developed a multi-tis-
sue predictor to estimate age based on DNA methylation at 329 
unique CpG sites from various different mouse tissues [125]. One 
group claims to have found three methylation sites, Prima1, Hsf4, 
and Kcns1, which are enough to predict biological age in mice [126]. 
However, this study has yet to be replicated. The most accurate 
clock results from applying elastic net regression to all CpGs for 
multi-tissue in mice [127].

Together these studies suggest that the DNA clock provides an 
objective biomarker for the study of aging [30,31]. Recently, met-
formin has shown that reversed subject’s biological age, based on 
assessment of Horvath clock [128,129]. Its use will allow us to ex-
amine the anti-aging effectiveness of NAD+ and its precursors more 
objectively and accurately. 

Clinical Research
NAD+ precursors can be delivered orally to humans or ani-

mals to alter the dynamic balance of NAD+/NADH in vivo [24,130]. 
Preliminary clinical studies in humans showed that NR supple-

mentation could improve muscle NAD+ metabolism in the elderly 
[131,132]. Healthy volunteers, who underwent an 8-day course 
of NR, with doses increasing from 250 mg to 1000 mg, showed 
increased levels of circulating NAD+ and experienced no adverse 
side effects [133]. Similarly, NR supplementation increased NADH 
and NADPH levels and improved exercise performance in elderly 
subjects [134]. Therefore, NMN is considered safe in clinical trials 
[135]. However, high dose supplementation with NAD+ precursors 
may increase rates of glycolysis and mitochondrial respiratory me-
tabolism, thereby promoting the secretion of proinflammatory cy-
tokines in cells [136]. Thus, use of supplements should be carefully 
observed to ensure that they strike a proper balance between an-
ti-aging effects and potential detrimental effects.

Conclusions
NAD+ is a cofactor for many important enzymes. Reduced 

levels of NAD+ have been associated with aging. Evidence suggests 
that supplementation with NAD+ precursors, or inhibition of 
NAD+ degradation, could improve metabolic function. While 
supplementation with NAD+ precursors has been found to delay 
aging in mice, anti-aging effects of NAD+ have yet to be demonstrated 
in human subjects. Use of a more accurate biomarker for aging, 
such as the DNA methylation clock, will significantly advance the 
field. Recently, several human clinical trials have been initiated.
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