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Introduction
HbF is a high oxygen affinity tetramer consisting of two α and 

two γ globin chains. Its role is to transfer oxygen from maternal 
to fetal circulation and represents the main hemoglobin fraction 
during fetal life. HbF production starts from the sixth week of ges-
tation and replaces the embryonic hemoglobins Gower I, Gower 
II and Portland produced in the first weeks after conception and 
at birth it constitutes about 80% of total hemoglobin. After birth, 
the synthesis of HbF decreases gradually due to silencing of the ex-
pression of γ globin genes and reciprocal increase in β-globin gene 
expression and is replaced by HbA. In normal conditions only trace 
amounts of HbF (less than 2%) are present in postnatal life after 1 
year of age [1]. However, HbF may be slightly or significantly elevat-
ed during adulthood. A high level of HbF is mainly due to patholog-
ical conditions such as β-thalassemia major, δβ-thalassemia, (as γ 
globin chains compensate for the lack of functional β-globin chains) 
erythropoietic stress and bone marrow malignancies, or nonpath-
ological conditions, known as HPFH, such as large deletions within 
the β-globin gene cluster (deletional HPFH), promoter variants of γ  

 
globin genes (non deletional HPFH) or pregnancy [2-4]. While per-
sistence of increased HbF production has no clinical consequences 
in healthy individuals, HbF is one of the most common and major 
modifiers of disease severity in individuals with β-thalassemia [5-
8].

The degree of HbF persistence varies greatly among adults and 
is largely genetically controlled [9]. Gene expression is modulated 
by a large number of polymorphisms on cis-regulatory elements lo-
cated between nucleotide -202 and -110 relative to the Cap site on 
promoter region of the HBG1 and HBG2 genes which disrupt tran-
scription factor binding motif (BCL11A, ZBTB7A, MYB, KLF1) [10-
12]. The involvement of some variants has a clear association with 
increased HbF levels, although others are still ambiguous. Gene 
and genetic variant identification contributing to HbF variation 
and the molecular mechanisms through which they operate play 
an important role in diagnostic and prognostic medicine, as well as 
in research for novel therapeutic markers. In fact, the reactivation 
of HbF synthesis by several approaches, such as pharmacological 
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and gene transfer, modulate the phenotype of patients with β-thal-
assemia [13]. The research of polymorphisms in γ globin genes 
and direct or indirect transcriptional repressors of γ globin gene 
expression has recently gained attention by aiding in the develop-
ment of new therapeutic strategies and pharmacological agents 
that increase the levels of this hemoglobin [14]. In this report we 
present full DNA analysis of both HBG2 and HBG1 genes to update 
the list of HPFH polymorphisms.

Materials and Methods
We screened a cohort of 96 β- and/or α-thalassemia subjects 

with high HbF levels who were referred to our diagnostic laborato-
ry for ascertainment of possible hemoglobinopathy and 30 healthy 
individuals with HbF level <2% recruited at Fondazione IRCCS Ca’ 
Granda, Ospedale Maggiore Policlinico in Milan. All subjects signed 
the informed consent form before blood sampling.

Patients were divided into 4 groups: 

1.	 8 α-thalassemia carriers (HbF level: 2.7% - 32.6%)

2.	 41 β-thalassemia carriers (HbF level: 3% - 50.3%)

3.	 4 β-thalassemia intermedia/major patients (HbF level: 
67% - 94.6%)

4.	 43 γ-thalassemia patients (HbF level: 2.2% - 16.5%)

The hematological parameters were determined on Sysmex 
XN-9000, and hemoglobins were analyzed routinely by High Per-
formance Liquid Chromatography- HPLC- Biorad D100, Biorad 
Laboratories, Hercules, CA, USA. Genomic DNA was extracted from 

peripheral blood samples. The research of polymorphisms in γ glo-
bin genes was performed by Sanger sequencing (BigDye Termina-
tor Cycle Sequencing Ready Reaction Kit v.1.1) on the ABI PRISM® 
3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). 
The research of deletional HPFH was performed by MLPA method 
according to the manufacturer’s instructions (SALSA® MLPA® 
Probemix P102-D1 HBB; MRC-Holland, Amsterdam, The Nether-
lands).

Results and Discussion
Table 1 & 2 show the frequencies in patient and reference 

groups of HBG2 and HBG1 polymorphisms, respectively. HBB 
MLPA resulted negative for all analysed subjects (data not shown). 
In the β- and α-thalassemia carriers and β-thalassemia interme-
dia/major, an increased HbF level is due to their pathologic con-
dition. In the β-thalassemia carrier group we found the c.227T>C 
HbF-Sardinia (AγT) variant together with β0 c.118C>T (Codon 39 
(C->T)) and an HbF increase of 10% of the total, as expected [15]. 
Two β0 c.92+1G>A (IVS-I-1 (G->A)) patients present the c.-170G>A 
(rs35378915) mutation, called Greek HPFH, that affects the binding 
of three nuclear factors to the CCAAT region of the HBG1 gene (HbF: 
10.3-50.3) [16]. In γ- thalassemia patients, the high HbF level is not 
correlated to β- and α-thalassemia, even if we cannot exclude other 
malignancies. We identified the following SNPs exclusively in this 
group: rs73402643, rs531285196, rs904054277, rs757734616 
and rs1231067410 in HBG2; rs35993903, rs34844625, rs3020750, 
rs2860456, rs1234411915, rs537552941, rs567305547, 
rs112286603 and c.*179G>A in HBG1. To note, c.*179G>A does not 
have an assigned reference SNP ID number.

Table 1: Allele Frequencies of HBG2 polymorphisms in patients and reference groups.

HBG2 POLYMORPHISMS (NM_000184.3) α-thalassemia 
carriers

β-thalassemia 
carriers

β-thalassemia 
intermedia/major 

patients

γ- thalassemia 
patients

Reference 
group

c.-558C>G (rs73402643) (c.-437-121C>G) 
475 bp before transcription start site

1/86 
(f=0.011)

c.-450_-445delCTTTAA (rs112075505) 
392-397 bp before transcription start site

1/16 
(f=0.062)

c.-450C>T (rs531285196) 
397 bp before transcription start site

1/86 
(f=0.011)

c.-422C>G (rs112215533) 
369 bp before transcription start site

2/82 
(f=0.024)

3/86 
(f=0.034)

c.-362A>G (rs112479156) 
309 bp before transcription start site

2/16 
(f=0.125)

2/82 
(f=0.024)

5/86 
(f=0.058)

c.-324T>C (rs113622787)  
271 bp before transcription start site

1/16 
(f=0.062)

c.-321G>C (rs904054277) 
268 bp before transcription start site

1/86 
(f=0.011)

c.-309 A>G (rs1045222350)  
256 bp before transcription start site

1/16 
(f=0.062)

2/86 
(f=0.023)

c.-211C>T (rs7482144) 
158 bp before transcription start site

6/16 
(f=0.375)

19/82 
(f=0.231)

4/8 
(f=0.500)

29/86 
(f=0.337)

21/60 
(f=0.350)

c.-69C>G (rs551623060) 
16 bp before transcription start site

1/82 
(f=0.012)

c.93-58C>T (rs1894398)  
intron 1 of 2 position 65 of 122 (intronic)

1/16 
(f=0.062)

22/82 
(f=0.268)

9/86 
(f=0.104)
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c.315+24A>C (rs33993529) 
intron 2 of 2 position 24 of 886 (intronic)

1/16 
(f=0.062)

c.*18C>T (rs757734616) 
exon 3 of 3 (3’UTR) position 147 of 218

1/86 
(f=0.011)

c.*54_*55ins A (rs34879481) 
exon 3 of 3 (3’UTR) before position 184 of 218

6/16 
(f=0.375)

18/82 
(f=0.219)

1/8 
(f=0.125)

23/86 
(f=0.267)

21/60 
(f=0.350)

c.*160G>T (rs1231067410) 
71 bp after transcription end site

1/86 
(f=0.011)

Table 2: Allele Frequencies of HBG1 polymorphisms in patients and reference groups.

HBG1 POLYMORPHISMS (NM_000559.2) α-thalassemia 
carriers

β-thalassemia 
carriers

β-thalassemia 
intermedia/major 

patients

γ- thalassemia 
patients

Reference 
group

c.-637G>A (rs2855039) 4/82  (f=0.048) 5/86 (f=0.058) 21/60 
(f=0.350)

c.-548T>A (rs57966301)  
495 bp before transcription start site

1/82 
(f=0.012)

2/86 
(f=0.023)

c.-447G>A (rs35993903)  
394 bp before transcription start site

1/86 
(f=0.011)

c.-418G>C (rs2855040)  
365 bp before transcription start site

1/82 
(f=0.012)

2/86 
(f=0.023)

c-405A>G (rs34844625) 
352 bp before transcription start site

1/86 
(f=0.011)

c.-373C>T (rs3020750)  
320 bp before transcription start site

1/86 
(f=0.011)

c.-366A>G (rs2860456)  
313 bp before transcription start site

1/86 
(f=0.011)

c.-320C>T (rs12290216)  
267 bp before transcription start site

1/16 
(f=0.062)

1/86 
(f=0.011)

c.-275_-274 in sAGCA (rs561507744)  
222 bp before transcription start site

10/16 
(f=0.625)

57/82 
(f=0.695)

4/8 
(f=0.500)

50/86 
(f=0.581)

51/60 
(f=0.850)

c.-214G>A (rs1234411915)  
161 bp before transcription start site

1/86 
(f=0.011)

c.-170G>A (rs35378915)  
117 bp before transcription start site

2/82 
(f=0.024)

c.-69C>G (rs558015287)  
16 bp before transcription start site

1/82 
(f=0.012)

c.-29G>A (rs368698783)  
exon 1 of 3 (5’UTR) position 25 of 145

3/16 
(f=0.187)

12/82 
(f=0.146)

2/8 
(f=0.250)

17/86 
(f=0.197)

21/60 
(f=0.350)

c.92+40C>A (rs537552941)  
intron 1 of 2 position 40 of 122 (intronic)

1/86 
(f=0.011)

c.92+41C>A (rs567305547)  
intron 1 of 2 position 41 of 122 (intronic)

1/86 
(f=0.011)

c.93-58C>T (rs202216517)  
intron 1 of 2 position 65 of 122 (intronic)

2/16 
(f=0.125)

26/82 
(f=0.317)

12/86 
(f=0.139)

c.227T>C p.Ile76Thr (rs1061234)  
Hb F-Sardinia (AγT)

2/16 
(f=0.125)

8/82 
(f=0.097)

4/86 
(f=0.046)

c.*3_*6 delTCAC insCTCT (rs386750130)  
exon 3 of 3 (3’UTR) position 132-135 of 216

11/16 
(f=0.687)

50/82 
(f=0.609)

4/8 
(f=0.500)

49/86 
(f=0.569)

43/60 
(f=0.716)

c.*15A>C (rs112286603)  
exon 3 of 3 (3’UTR) position 144 of 216

1/86 
(f=0.011)

c.*55delA (rs3841756)  
exon 3 of 3 (3’UTR) position 184 of 216

1/16 
(f=0.062)

15/82 
(f=0.182)

10/86 
(f=0.116)

13/60 
(f=0.216)

c.*124T>A (rs2402330)  
37 bp after transcription end site

2/82 
(f=0.024)

1/86 
(f=0.011)

c.*179G>A 1/86 
(f=0.011)
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c.*246A>T (rs916111)  
159 bp after transcription end site

6/16 
(f=0.375)

36/82 
(f=0.439)

22/86 
(f=0.255)

30/60 
(f=0.500)

c.*259A>T (rs1143541)  
172 bp after transcription end site

2/16 
(f=0.125)

2/82 
(f=0.024)

6/86 
(f=0.069)

c.*344G>A (rs147256314)  
257 bp after transcription end site

1/86 
(f=0.011)

In comparing patient and reference groups, nucleotide var-
iations identified only in promoter regions of patient groups in-
clude rs73402643, rs112075505, rs531285196, rs112215533, 
rs112479156, rs113622787, rs904054277, rs1045222350 and 
rs551623060 in HBG2 and rs57966301, rs35993903, rs2855040, 
rs34844625, rs3020750, rs2860456, rs12290216, rs1234411915, 
rs35378915 and rs558015287 in HBG1. They are located between 
c.-558C>G (475bp before transcription start site) and c.-309A>G 
(256bp before transcription start site) in the HBG2 promoter re-
gion, and between c.-548T>A (495bp before transcription start 
site) and c.-366A>G (313bp before transcription start site) in the 
HBG1 promoter region.

Considering their position, frequency, absence in reference 
group and effect on HbF level (range from 2.5-5%), these varia-
tions may modify transcription binding sites, resulting in up-reg-
ulation of γ globin gene or influence the HBG2 and HBG1 ratio ex-
pression. Always considering patients versus reference group, we 
identified in the HBG2 intron: rs33993529 and the HBG1 intron: 
rs537552941, rs567305547 and rs1061234. The presence of c.93-
58C>T (rs1894398) in HBG2 and c.93-58C>T (rs202216517) in 
HBG1, are observed only inpatient groups, even if population fre-
quencies, obtained from exomes and whole genomes studies, are 
ƒ = 0.169(rs202216517) and ƒ = 0.425 (rs1894398) [17]. Analysis 
of 3’UTR showed the presence of rs757734616 and rs1231067410 
in HBG2 and rs112286603, rs2402330, c.*179G>A, rs1143541 and 
rs147256314 in HBG1. We identified the following SNPs in the pro-
moter region in both patient and reference groups, with differing 
HbF levels (patient >4% and reference <2%): HBG2: rs7482144 
and rs34879481; HBG1: rs2855039, rs561507744, rs386750130, 
rs3841756 and rs916111. 

Given their frequency in our cohort and the population fre-
quency reported, we can assume they are polymorphisms. We can-
not exclude that those SNPs induce HBG expression genes under 
erythropoietic stress conditions. Inducing erythropoietic stress 
in the reference group followed by HbF analysis could help de-
fine their role. We observed in all groups that a high frequency of 
HBG2 c.-211C>T (rs7482144) expressed concomitant with HBG1 
c.-29G>A (rs368698783) is associated with a greater variability in 
HbF level (range from 0.4-15.1%) [18]. Analysis of 3’UTR showed 
the presence of polymorphisms with a high frequency in both pa-
tient and reference groups, such as c.*54_*55insA (rs34879481) in 
HBG2 and c.*3_*6delTCACinsCTCT (rs386750130) in HBG1. Pol-
ymorphisms on 3’UTR may influence microRNAs binding, whose 
expression is enhanced/inhibited during erythroid differentiation 
and induction of HbF production [19]. Recent studies have revealed 
that some microRNAs influence the expression of the γ-globin gene, 
showing that high HbF levels in adulthood may result from a range 

of genetic factors which may explain the observed variations in HbF 
of healthy subjects and patients with hemoglobinopathies [20,21].

Conclusion
HPFH is a harmless condition characterized by a lack of chang-

es in the synthesis of β-globin chains, resulting in an increase of γ 
chains and consequently high HbF level [22]. However, slightly or 
severely increased HbF values in adults may hide a more complex 
clinical condition, such as β-thalassemia major, δβ-thalassemia, 
or bone marrow malignancies. As known in literature, HBG2 and 
HBG1 promoter regions have a regulatory role in gene expression 
because they contain enhancer and silencer elements [23]. Our 
study proposes to list SNPs found in HBG2 and HBG1 promoter re-
gions and in 3’UTR in a cohort of patients with hemoglobinopathies 
and subjects with slightly or severely increased HbF values and in a 
reference group, to underlie the importance of a correct ascertain-
ment and interpretation of an elevated HbF level. 

Our results show several SNPs found either in patient and ref-
erence groups, whose correlation to HbF expression isn’t clear, al-
though they might be involved in stimulation of HBG2 and HBG1 ex-
pression during stress erythropoiesis. Exclusively inpatient groups 
we have also identified nucleotide variations, which may play a role 
in transcription binding site modification and regulation of γ globin 
genes expression. More data is necessary to define a genotype/phe-
notype correlation. Additional studies are necessary to clarify the 
possible role of identified SNPs in our cohort to better understand 
their impact on HbF production in adults and alleviation in thalas-
semia disease. The level of HbF is an important index in thalassem-
ia because it can hide a complex genotype that could otherwise be 
misdiagnosed causing diagnostic errors and incorrect reproductive 
risk.
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