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Introduction
The development of the theory of dynamic systems and 

computer methods allowed a new approach to the study of such 
a complex active medium as heart tissue. The combined use of 
these two approaches, as well as the consideration of cardiac tissue 
as a system consisting of self-oscillating and excitable elements, 
makes it possible to deeply understand the processes underlying 
the functioning of the heart and describe the various cardiac 
pathologies (arrhythmias). One of the very relevant and practically 
important directions here is the task of stabilizing the work of the 
heart muscle in some types of deep arrhythmias [7,8]. Stabilization 
of unstable or chaotic behavior of a dynamic system, creation of 
artificial in the studied system of stable periodic oscillations, by 
means of external multiplicative or additive influences. To stabilize, 
it is necessary to find such external disturbances that would bring 
the system out of the chaotic regime on a regular one. To solve these 
problems, there is, at present, sufficient scientific interest. The 
relevance of this problem in the application to active environments 
is obvious. For example, for cardiac tissue, the removal of the 
system to the desired dynamic mode makes it possible to control 
the rhythm and thus restore the required dynamics. This approach  

 
to the stabilization of dangerous arrhythmias allows us to hope for 
the creation of new effective rhythm drivers. At the same time, it is 
important to minimize energy costs, since the application of pulses 
of large amplitude to biological tissues is unacceptable.

Chaos Suppression and Cardiac Arrhythmia 
Heart muscle refers to excitable systems. Wave propagation 

in such systems is carried out by means of an energy source 
distributed in it. When a pulse is applied to such a system, a 
disturbance begins to propagate from the place of its application, 
an excitation wave: the incoming pulse is transmitted sequentially 
from element to element without fading. Usually, after the excitation 
of each element is not able to immediately be excited again, there 
is a certain “relaxation time”, called the refractory period, during 
which the element is restored. This lead, on the one hand, to an 
ordered spatial propagation of the excitation wave, and on the 
other hand, with frequent supply of pulses (or with a large period 
of refractoriness), some of them will be blocked. 

Suppose that there is a homogeneous excitable medium in 
which all elements have identical properties. Then the excitation 
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Abstract

Currently, active media form a very promising area of research, because they include a variety of physical, chemical, biological, etc. objects: 
electronic solid-state systems, a number of chemical solutions and gels (including the Belousov reaction), nerve and muscle tissue, microbial 
colonies, ecological systems, etc. Representation of active media through ensembles linked excitable or self-oscillating elements is quite useful 
method of analysis, because the active media allows you to deeply understand the basic dynamic processes occurring in such environments. As is 
known, this approach goes back to the Wiener and rosenbluth Model [1], according to which the excitable medium consists of a set of interacting 
elements in one of three possible States: excitation, refractoriness or rest. 

Later, models such as limit-cycle oscillators and chaotic maps [2-3] also began to play an important role not only in a fairly realistic description 
of active media, but also in understanding the possible behavior of systems far from equilibrium. Many useful concepts, such as phase captures, 
synchronization, and space-time chaos, have become popular due to detailed studies of similar nonlinear models [4-6]. Analysis of systems of 
interacting elements allows us to determine a number of patterns of behavior of active environments, often hidden and implicit. For example, it 
becomes possible to describe complex (including chaotic) dynamic regimes at a qualitatively different level, to calculate a number of invariant 
characteristics of the process dynamics and to give a visual representation of the obtained solution.
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frequency of all such elements will be the same. If some area of this 
environment to start periodically to perturb, in this region there 
is a source of concentrically radiating waves of excitement. Such 
a source is called a leading center or pejjsmeker. If an excitable 
medium is two or more pacemaker, pejjsmeker less of the oscillation 
frequency with time is suppressed by pejjsmeker greater frequency. 
In other words, there is competition between pacemakers. Ideally, 
after a certain time throughout an environment will be only one 

pejjsmeker Fig.1A. In addition to pacemakers, in excitable media, 
other sources of excitation of spiral waves may appear, which 
are “rotating” spirals. All spiral waves have the same frequency. 
Therefore, they always coexist with each other, but extinguish the 
leading center, which is a slower autowave source. Spiral waves 
are the main type of elementary self-supporting structures in 
homogeneous excitable media, like vortices in a superconductor or 
in superfluid helium, and they are extremely stable (Figure 1).

Figure 1: Single helical wave (a) and multiple co-existing helical waves (b).

 The appearance of several sources of excitation in the heart 
muscle is currently associated with dangerous disorders of the 
normal functioning of the heart --- arrhythmia. With many abnormal 
sources, Figure fibrillation occurs 1b.

 Fibrillation is a dangerous violation of the heart rhythm, 
due to the appearance of many small waves in the heart tissue. 
This process can develop due to several reasons. One of them is 
the appearance of periodic stimulation of myocardial areas. In 
this case, fibrillation occurs after the cessation of stimulation in 
a medium with a variable refractory period. If, for one reason or 
another, the heart received a pulse in the critical phase (during the 
refractory period of the ventricles), it will generate a wave crossing 
the refractory zone. Then the ends of the excitation wave can twist, 
giving rise to spiral waves rotating in opposite directions. 

Modern methods of removing the heart from the state of 
fibrillation are very rigid (supply of a short electrical pulse of a 
huge voltage and a large current). The development of nonlinear 
dynamics and synergetics made it possible to understand that such 
a force effect is not necessary. Often enough weak electrical effects 
directly on the heart muscle. Precisely, if there are spiral waves with 
opposite directions of rotation in the medium, then, choosing the 

phase and frequency of external action, it is possible to achieve the 
movement of the centers of the two waves towards each other and 
their annihilation. 

Cardiac Conduction System
Normally, the excitation of the heart muscle originates in the 

sinus, or sinoatrial node (ACS), covers the myocardium of the 
Atria and, passing the atrioventricular node (AVA), extends along 
the legs of the bundle of GIS and Purkinje fibers to the ventricular 
myocardium (Figure 2). Thus, the normal heart rate is determined 
by the activity of a group of conducting P-cells of the ACS, which 
is called a first-order rhythm driver (it produces 60-90 UTIs/
min), or a true pacemaker. In addition to the cells of the sinus node 
automaticity inherent in the other structures of the conduction 
system of the heart. Pacemaker of the second order (40-60 
impulses/min) localized in the NH area AVA. A pacemaker third 
order (20-40 CPM) are the cells of Purkinje, forming part of the 
conduction system of the ventricles. Due to the “law of the gradient 
of automatie” the activity of the underlying drivers of a rhythm is 
suppressed in the normal sinoatrial node. Therefore, the pacemaker 
second and third order are called latent (or potential) pacemaker.

Figure 2: Cardiac conduction system. Sinoatrial Node (SAN) sinoatrial node; Right Atrium – right atrium; Atrioventricular Node (AVN) – 
atrioventricular node; Right Bundle Branch (RBB) –right leg of bundle branch block, Right Ventricle – right ventricle; Left Atrium – left atrium; His 
Bundle – bundle branch block; Left Bundle Branch (LBB) left leg of bundle branch block, Left Posterior Fascicle (LPF) – left rear bundle of fibers; 
Left Ventricle – left ventricle; Left Anterior Fascicle (LAF) – left front bundle of fibers; Purkinje Fibers (PF) – Purkinje fibers.
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Fibrillation 
In a healthy heart, refractoriness provides a normal sequence 

of propagation of excitation into the heart and electrical stability of 
the myocardium. Since the area of the myocardium through which 
the excitation passes becomes unresponsive for some time, re-entry 
of the excitation into this area is impossible. Due to this, the counter 
waves in the myocardium mutually “extinguish” each other, which 
prevents, in particular, the appearance of unwanted circulation of 
excitation. However, in the final stage of each excitation cycle, the 
myocardium becomes inhomogeneous in refractoriness for a short 
time and loses electrical stability. Stimulus, acting at this time, can 
lead to serious violations of the normal course of excitation, in 
particular to the emergence of circulating excitation waves by the 
mechanism of “re-entry” (re-entry) [9]. 

Sharp violations of the normal ratio of excitability and 
refractoriness can lead to the formation of a large number of re-

entrant waves in the myocardium, which are spiral waves (Figure 
1b) on the surface of the heart and complete desynchronization and 
discoordination of the activity of the myocardial fibers when they 
begin to excite and contract independently. This condition is called 
fibrillation and is accompanied by almost complete loss of pumping 
function of the corresponding part of the heart. 

The theory of dynamic systems describes many processes 
inherent in active media, including some types of arrhythmias [10]. 
Since arrhythmias are caused by certain disorders in the heart 
muscle and, therefore, are pathological conditions, the modeling of 
such systems is of great practical interest and can bring closer to 
solving the problem of the possibility of controlling their behavior 
through external influences. This, in turn, allows us to come close 
to the problem of soft withdrawal of active systems from the state 
of developed space–time chaos characterizing some types of 
pathologies [11-13]. 

A current model based on an Autonomous dynamic system with a hyperbolic attractor of the Smale-Williams type

Figure 3: Scheme of the device, the dynamics of which is described by a system of equations (94) with coefficients and parameters MS. 
Dynamic variables x, y, z, v correspond to voltages on capacitors C1, C2, C3, C4, measured in decivolts. Implemented electronic device (Figure 3), 
which is an Autonomous dynamic system with a hyperbolic attractor of the Smale-Williams type. An experimental study of the laboratory model of 
the hyperbolic chaos generator was carried out and the observed dynamics was demonstrated to correspond to the results of numerical calculations 
and circuit simulation in the Multisim software environment (together with the lab. SF-6) (Figure 4) [14,15].

Figure 4: Experimental study of the laboratory layout of the hyperbolic chaos generator and demonstrated the compliance of the observed 
dynamics with the results of numerical calculations and circuit simulation in the Multisim software environment.

An electronic device based on an Autonomous dynamic system 
with a hyperbolic attractor of the Smale-Williams type (Figure 
3 & 4). Each of the four dynamic variables x, y, u, v is associated 
with a fragment of the circuit, which is an integrator based on the 
operational amplifier (respectively, U1, U2, U3, U4), capacitance 

(C1, C2, C3, C4) and resistance (R13, R14, R16, R17). The actual 
values of x, y, u, v correspond to the voltages on the capacitors C1, 
C2, C3 and C4, respectively. The constant with the dimension of 
time is determined by the capacitance and resistance, and at the 
values specified in the scheme, is MS. For the presented scheme, 
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the coupling coefficients are. The implemented electronic device is 
described by the equation (1): 

2 21
1 12( , , , ) ( ),dx x y u v x u v

dt
τ µ ε= − −

1 1( , , , ) ,dy x y u v y uv
dt

τ µ ε= −

2 2( , ) ,du x y u x
dt

τ µ ε= −

2 2( , ) ,dv x y v y
dt

τ µ ε= −

2 2 2 2 21 1
1 2 1 1 2 1 1 22 501 (1 ) , 1, ,r r r r r x y r u vµ µ= − + − − = − = + = +

 To study fibrillation, we use a model with feedbacks and 
time delay 

(Figure 5) The system (1) with the addition of a demonstration 
model of fibrillation will take the form presented by the equation 
(2):

Figure 5: Demonstration model of fibrillation. 

2 21
1 1 12( , , , ) ( ) ,dx x y u v x u v D

dt
µ ε= − − +

1 1 2( , , , ) ,dy x y u v y uv D
dt

µ ε= − +

2 2( , ) ,du x y u x
dt

µ ε= −

2 2( , ) ,dv x y v y
dt

µ ε= −

1 1 2 2( ), ( )t t t tD K y x D K y yτ τ− −= − = −

Figure 6: Time and phase portraits of the hyperbolic attractor at 
K1 = 0.0 & K2 = 0.0 ... 0.1 ... 0.3 are presented.

Figure 7: Time and phase portraits of the hyperbolic attractor at 
K1 = 0.0 & K2 = 0.4 ... 0.9 are presented.

Figure 8: Time portraits of hyperbolic attractor at K1 = 0.0 & K2 = 
1.0 ... 1.7 ... 2.0 are presented.

Analysis of the demonstration model of fibrillation presented 
by equation (2) for K1 = 0.0. Analysis of the demonstration 
model of fibrillation, for K1 = 0.0 showed, at K2 = 0.1 comes the 
synchronization observed in the phase portrait Figure 6, at K2 = 0.1 
... 1.6 synchronization is observed in the phase portrait Figure 6-8, 
at K2 = 1.7 relaxation hyperbolic chaos. 

The analysis of the demonstration model of fibrillation 
presented by the equation (2) for K2 = 1.7 is carried out (Figure 
9-12).

Figure 9: On the left, ECG Belyakina S. T. conducted during a 
medical examination of the clinic of Moscow state University. M. V. 
Lomonosov. 17.08.2017. Right, ECG of a 12 – year-old, 24 - year-old 
black female patient with sickle cell anemia, renal insufficiency, and 
hyperparathyroidism [16,17].

Discussion
Analysis of the demonstration model of fibrillation, for K2 = 

1.7 showed, at K1 = 0.4 comes the synchronization observed in 
the phase portrait Figure 10, at K1 = 0.4 ... 1.5 synchronization is 
observed in the phase portrait Figure 6-8, at K1 = 1.7 hyperbolic 
chaos (fibrillation), at K1 = 1.8 relaxation hyperbolic chaos. In 
rice.9, presents real ECG data [27,28], which can be used to study 
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and predict the behavior of heart failure current models. In fig.10 – 
12, various behaviors of the system (19), which can be used in the 
presentation of different heart failure, are considered. 

Figure 10: Time and phase portraits of the hyperbolic attractor at 
K1 = 0.1 ... 0.4 ... 0.6 & K2 = 1.7 are presented.

Figure 11: Time and phase portraits of the hyperbolic attractor at 
K1 = 0.7 ... 1.2 & K2 = 1.7 are presented.

Figure 12: Time and phase portraits of the hyperbolic attractor at 
K1 = 1.3 ... 1.5 ... 1.8 & K2 = 1.7 are presented. 

Acknowledgements
This work is supported, in part, by the efforts of Dr. Kuznetsov 

Sergey P., Professor and Chairman of Faculty of Nonlinear Processes, 
Department of Dynamic Systems, State University of Saratov, 
Saratov 410012, Russia. 

References
1.	 Wiener N, Rosenblueth A (1946) The mathematical formulation of the 

problem of conduction of impulses in a network of connected excitable 
elements, specifically in cardiac muscle. Arch Inst Cardiologia de Mexico 
16(3): 205-265.

2.	 Shibata T, Kaneko K (1998) Collective chaos. Phys Rev Lett 81: 4116-
4119. 

3.	 Kaneko K (1990) Clustering, coding, switching, hierarchical ordering, 
and control in a network of chaotic elements. Physica D 41: 137-172. 

4.	 Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. 
Springer-Verlag, Berlin. 

5.	 Kuramoto Y (1995) Scaling behavior of turbulent oscillators with 
nonlocal interaction. Prog Theor Phys 94: 321-330. 

6.	 Winfree AT (2000) The Geometry of Biological Time. (2nd edn), Springer-
Verlag, New York, USA.

7.	 Zipes DP, Jalife J Orlando (1985) Cardiac Electrophysiology and 
Arrhythmias. Grune and Stratton, New York, USA.

8.	 Zipes DP, Jalife J (2004) Cardiac Electrophysiology-from Cell to BedSide. 
(4th edn) WB Saunders, Philadelphia, USA.

9.	 Clayton R, Zhuchkova E, Panfilov A (2006) Phase singularities 
and filaments: Simplifying complexity in computational models of 
ventricular fibrillation. Prog Biophys Mol Biol 90: 378-398.

10.	Beuter A, Glass L, Mackey MC, Titcombe MS (2003) Nonlinear Dynamics 
in Physiology and Medicine. Springer-Verlag, New York, USA.

11.	Witkowski FX, Penkoske PA, Plonsey R, Kaplan DT, Spano ML, et al. 
(1995) Development of a nonlinearly deterministic signal generator for 
real time chaos control testing. Eng in Medicine and Biology Soc. IEEE 
17th Ann Conf, 1: 287-288.

12.	Brandt ME, Guanrong Chen (1996) Feedback control of a quadratic map 
model of cardiac chaos. Int J Bifurcation and Chaos 6(4): 715-723.

13.	Garfinkel A, Spano ML, Ditto WL (1992) Controlling cardiac chaos. 
Science 257: 1230-1235. 

14.	SP Kuznetsov, A Pikovsky (2007) Autonomous coupled oscillators with 
hyperbolic strange attractors. Physica D232: 87-102.

15.	SP Kuznetsov (2005) Example of a Physical System with a Hyperbolic 
Attractor of the Smale-Williams Type. Phys Rev Lett 95: 144101. 

16.	Nabil El-Sherif, Gioia Turitto (2011) Electrolyte disorders and 
arrhythmogenesis. Cardiology Journal 18(3): 237-241. 

17.	ST Belyakin, SA Shyteev (2018) The current model of cardiac arrhythmia 
based on an autonomous dynamical system with a Smale - Williams 
hyperbolic attractor. Biomedical Journal of Scientific & Technical 
Research 10(5): 1-8.

https://biomedgrid.com/
https://www.ncbi.nlm.nih.gov/pubmed/20245817
https://www.ncbi.nlm.nih.gov/pubmed/20245817
https://www.ncbi.nlm.nih.gov/pubmed/20245817
https://www.ncbi.nlm.nih.gov/pubmed/20245817
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.4116
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.4116
https://www.sciencedirect.com/science/article/pii/016727899090119A
https://www.sciencedirect.com/science/article/pii/016727899090119A
https://academic.oup.com/ptp/article/94/3/321/1848681
https://academic.oup.com/ptp/article/94/3/321/1848681
https://www.ncbi.nlm.nih.gov/pubmed/16098568
https://www.ncbi.nlm.nih.gov/pubmed/16098568
https://www.ncbi.nlm.nih.gov/pubmed/16098568
https://www.worldscientific.com/doi/abs/10.1142/S0218127496000370
https://www.worldscientific.com/doi/abs/10.1142/S0218127496000370
https://www.ncbi.nlm.nih.gov/pubmed/1519060
https://www.ncbi.nlm.nih.gov/pubmed/1519060
http://www.stat.physik.uni-potsdam.de/~pikovsky/pdffiles/2007/PhD_232_87.pdf
http://www.stat.physik.uni-potsdam.de/~pikovsky/pdffiles/2007/PhD_232_87.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.144101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.144101
https://biomedres.us/pdfs/BJSTR.MS.ID.002005.pdf
https://biomedres.us/pdfs/BJSTR.MS.ID.002005.pdf
https://biomedres.us/pdfs/BJSTR.MS.ID.002005.pdf
https://biomedres.us/pdfs/BJSTR.MS.ID.002005.pdf

	Model Fibrillation as an Analogue of the Hyperbolic the Smale-Williams Attractor
	Abstract 
	Introduction 
	Chaos Suppression and Cardiac Arrhythmia  
	Cardiac Conduction System 
	Fibrillation  
	A current model based on an Autonomous dynamic system with a hyperbolic attractor of the Smale-Willi
	 To study fibrillation, we use a model with feedbacks and time delay 

	Discussion
	Acknowledgements 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

